データセットと DataLoader を使用して PyTorch でデータをカスタマイズする

データセットと DataLoader を使用して PyTorch でデータをカスタマイズする

大規模なデータセットを扱う場合、データ全体を一度にメモリにロードすることが非常に困難になることがあります。

したがって、唯一の方法は、処理のためにデータをバッチでメモリにロードすることであり、これを行うには追加のコードを記述する必要があります。この目的のために、PyTorch はすでに Dataloader 関数を提供しています。

データローダー

PyTorch ライブラリの DataLoader 関数の構文とそのパラメータ情報を以下に示します。

  1. DataLoader(データセット、batch_size=1、shuffle= False 、sampler=None、
  2. batch_sampler=なし、num_workers=0、collat​​e_fn=なし、
  3. pin_memory= False 、drop_last= False 、タイムアウト=0、
  4. worker_init_fn=なし、*、prefetch_factor=2、
  5. persistent_workers = False )

いくつかの重要なパラメータ

  • データセット: まずデータセットを使用して DataLoader クラスを構築する必要があります。
  • シャッフル: データを再編成するかどうか。
  • Sampler : オプションの torch.utils.data.Sampler クラス インスタンスを参照します。サンプラーは、サンプルを順番に、ランダムに、またはその他の方法で取得するための戦略を定義します。サンプラーを使用する場合は、シャッフルを false に設定する必要があります。
  • Batch_Sampler: バッチレベル。
  • num_workers: データをロードするために必要な子プロセスの数。
  • collat​​e_fn : サンプルをバッチにまとめます。 Torch ではカスタム照合が可能です。

組み込みのMNISTデータセットをロードする

MNIST は手書きの数字を含む有名なデータセットです。 DataLoader 機能を使用して PyTorch の組み込み MNIST データセットを処理する方法を説明します。

  1. 輸入トーチ
  2. matplotlib.pyplot をpltとしてインポートします。
  3. torchvisionからデータセットをインポートし、変換する

上記のコードは、torchvision の torch コンピュータ ビジョン モジュールをインポートします。これは画像データセットを操作するときによく使用され、画像の正規化、サイズ変更、切り抜きに役立ちます。

MNIST データセットの場合、次の正規化手法が使用されます。

ToTensor() は、0〜255 のグレースケール範囲を 0〜1 に変換できます。

  1. 変換 = transforms.Compose([transforms.ToTensor()])

必要なデータセットを読み込むには、次のコードを使用します。 PyTorchDataLoader を使用して、batch_size = 64 を指定してデータをロードします。 shuffle=True はデータをシャッフルします。

  1. trainset = datasets.MNIST( '~/.pytorch/MNIST_data/' 、 download= True 、 train= True 、 transform=transform)
  2. トレインローダー = torch.utils.data.DataLoader(トレインセット、バッチサイズ = 64、シャッフル = True )

データセット内のすべての画像を取得するには、通常、iter 関数とデータ ローダー DataLoader を使用します。

  1. dataiter = iter(trainloader)
  2. 画像、ラベル = dataiter.next ()
  3. 印刷(images.shape)
  4. 印刷(ラベル.形状)
  5. plt.imshow(images[1].numpy().squeeze(), cmap= 'Greys_r' )

カスタムデータセット

次のコードは、1000 個の乱数を含むカスタム データセットを作成します。

  1. torch.utils.dataからデータセットをインポート
  2. ランダムにインポート
  3.   
  4. クラスSampleDataset(データセット):
  5. __init__(self,r1,r2)を定義します。
  6. ランダムリスト=[]
  7. iが範囲(120)内にある場合:
  8. n = ランダム.randint(r1,r2)
  9. ランダムリストに追加(n)
  10. self.samples = ランダムリスト
  11.   
  12. __len__(自分)を定義します:
  13. len(self.samples)を返す
  14.   
  15. __getitem__(self, idx)を定義します。
  16. 戻り値(self.samples[idx])
  17.   
  18. データセット=サンプルデータセット(1,100)
  19. データセット[100:120]

ここに画像の説明を挿入

最後に、カスタム データセットでデータローダー関数を使用します。 batch_size は 12 に設定され、num_workers = 2 で並列マルチプロセス データ ロードも有効になります。

  1. torch.utils.dataからDataLoader をインポートします
  2. ローダー = DataLoader(データセット、バッチサイズ=12、シャッフル= True 、num_workers=2)
  3. iの場合 enumerate(loader)バッチ処理します。
  4. print(i, バッチ)

以下では、いくつかの例を通して、大量のデータをバッチでメモリにロードする際の PyTorch Dataloader の役割について学習します。

<<:  再帰アルゴリズム: 不可解なスイッチ「ライトを引く」

>>:  Go データ構造とアルゴリズムの基本クイックソート

ブログ    

推薦する

2021 年に注目すべき 4 つの自動化問題

[[377158]]研究によれば、コロナウイルスのパンデミック中に組織が確立したビジネス規範は、パン...

Transformerが3Dモデリングに革命を起こし、MeshGPT生成結果がプロのモデラーやネットユーザーに衝撃を与える:革命的なアイデア

コンピュータグラフィックスでは、「三角メッシュ」は 3D 幾何学的オブジェクトの主な表現であり、ゲー...

AIの「冬」にご用心

1950 年代のコンピューティング ブームにより、「人工知能」という用語が誕生しました (1956 ...

...

AI+3Dカメラ:iPhone 10から見るスマートフォンの新たな変化の方向性

[[203631]]今年はiPhone発売10周年の年です。 9月13日午前1時(北京時間)、アップ...

...

公式論文コードが公開されました。OpenAIはGPT-3のイメージ版をどのように実装したのでしょうか?

OpenAIはDALL-Eに関するいくつかの論文と実装コードを公開しました。今年初め、OpenAI...

...

医療AIの将来に注目すべき3つのトレンド

COVID-19の流行、メンタルヘルスの危機、医療費の高騰、人口の高齢化により、業界のリーダーたちは...

世界図書デー: スマートテクノロジーがいかにして優れた読書環境を作り出すか

4月23日は第25回「世界本の日」です!今日は本を読みましたか?ゴーリキーはかつてこう言った。「本は...

AIのための大規模ストレージインフラストラクチャの要件

大規模な人工知能 (AI) により、容量とパフォーマンスの面でストレージ インフラストラクチャの水準...

...

人工知能(AI)について知っておくべきことすべて

人工知能の進歩は前例のない機会をもたらすと同時に、経済的、政治的、社会的混乱ももたらします。専門家は...

...

スタンフォード大学: 人工知能に関する 4 年間の学部課程一覧

最近、数年間業界で働いているスタンフォード大学の AI 卒業生が、AI と機械学習のキャリアのために...