人間が世界を理解するのに近づく:研究者はAIに「想像力」を与える

人間が世界を理解するのに近づく:研究者はAIに「想像力」を与える

オレンジ色の猫を想像してください。次に、その猫の毛が黒だけであることを想像してください。そして、万里の長城に沿って闊歩する猫を想像してください。この一連の思考により、脳内のニューロンが急速に活性化し、世界に対するこれまでの理解に基づいてさまざまなイメージが浮かび上がります。言い換えれば、人間は異なる特性を持つ物体を想像することが容易なのです。

[[412060]]

しかし、ディープニューラルネットワークはいくつかのタスクにおいて人間と同等かそれ以上のパフォーマンスを達成しているものの、コンピューターは依然として「想像力」という人間特有のスキルに苦労しています。

現在、コンピューターサイエンスの教授であるローラン・イッティ氏と博士課程の学生であるユンハオ・ゲ氏、サミ・アブ・エル・ハイジャ氏、ガン・シン氏を含む南カリフォルニア大学の研究チームは、人間のような能力を使って、これまで見たことのない、異なる特性を持つ物体を想像できるAIを開発した。

「我々は人間の視覚の一般化能力にヒントを得て、人間の想像力を機械でシミュレートしようとした」と、この研究論文の筆頭著者であるゲ氏は語った。「人間は、学んだことを属性(形、姿勢、位置、色など)ごとに分離し、それらを再結合して新しい物体を想像することができる。我々の論文は、ニューラルネットワークを使ってこのプロセスをシミュレートしようとしている。」

AIにおける一般化の問題

車の画像を生成する AI システムを作成したいとします。理想的には、アルゴリズムに車の画像をいくつか入力して、さまざまな角度からさまざまな色で車の画像を生成できるようにします。

これは AI が長年追求してきた目標の 1 つであり、外挿できるモデルを作成することです。つまり、ほんの数例が与えられれば、モデルは基礎となるルールを抽出し、それをこれまでに見たことのない多数の新しい例に適用できるはずです。しかし、機械は通常、オブジェクトの属性を考慮せずに、ピクセルなどのサンプルの特徴に基づいてトレーニングされます。

想像力の科学

新しい研究では、研究者たちは「分離」と呼ばれる概念を使ってこの制限を克服しようとした。分離はディープフェイクを生成するために使用できます。ゲ氏は、こうすることで「新しい画像や動画を合成して、元の人物を別の人物のアイデンティティに置き換えながら、元の動きは維持できる」と指摘した。

同様に、新しい手法では、従来のアルゴリズムのように一度に 1 枚ずつサンプル画像を取得するのではなく、サンプル画像のセットを取得し、それらの類似点を掘り起こして、「制御可能な分離表現学習」と呼ばれるものを実現します。

次に、この知識を再結合して、「新しいイメージの制御可能な合成」、つまり想像力と呼べるものを実現します。 「これは、人間が推測する方法に似ています。ある物体の色を見ると、元の色を新しい色に置き換えることで、他の物体にも簡単に適用できます。」研究チームは、この技術を使用して 156 万枚の画像の新しいデータセットを生成しました。これは、この分野での将来の研究に役立つ可能性があります。

世界を理解する

分離は新しい概念ではないが、研究者らは、彼らのフレームワークはほぼあらゆる種類のデータや知識と互換性があると言う。これにより、応用の機会が広がります。たとえば、人種や性別などのデリケートな属性を方程式から除外すると、より公平な AI を作成できます。

医療分野では、薬物の機能を他の特性から分離し、それらを再結合して新しい薬物を合成することで、医師や生物学者がより有用な薬物を発見するのに役立ちます。機械に想像力を与えることは、より安全な AI の作成にも役立ちます。たとえば、自動運転車が、訓練されていない危険なシナリオを想像して回避できるようになります。

「ディープラーニングは多くの分野で驚くべきパフォーマンスと将来性を示していますが、これは多くの場合、各オブジェクトをユニークにする個々の特性を深く理解することなく、浅い模倣によって行われています」とイッティ氏は述べました。「この新しい分離アプローチは、初めてAIシステムの新しい可能性を解き放ち、世界を人間が理解することに近づけます。」

<<:  エンジニアがソフトロボットを制御する空気圧式コンピュータメモリを開発

>>:  人工知能は人間が理解できない量子実験を設計する

ブログ    
ブログ    

推薦する

注目を浴びるAIとゲームは、どんな火花を散らすことができるのでしょうか?

[[202722]] 2005年、JJ Linは「Number 89757」で「人間を模倣した機械...

人工知能は200年以上前の進化のパズルをどうやって解くことができるのでしょうか?

人工知能は進化における最も古い謎の 1 つを解くのに役立っていますが、新たな謎ももたらしています。 ...

人工知能と自然言語処理技術

人工知能技術の発展に伴い、コンピューターを使って外国の文書を翻訳するなど、私たちの生活の多くのアプリ...

初心者必読!畳み込みニューラルネットワークの始め方

畳み込みニューラル ネットワークは、ディープ ニューラル ネットワークの中で非常に人気のあるネットワ...

機械学習に基づく自動文書ラベル付けグラフ技術

このコースでは、ナレッジグラフ技術の開発動向、機械学習に基づくラベルグラフ技術のアイデア、主要技術の...

次世代人工知能の開発方向(第1部)

[[349500]]人工知能は半世紀以上前から存在していますが、人工知能の分野は過去 10 年間で...

研究者はAIを使って、人間には判別が難しい火星のクレーターを発見する

惑星科学者たちは、このような高度な天文学研究に人工知能を利用することは画期的なことだと述べている。 ...

[ディープラーニングシリーズ] PaddlePaddle と Tensorflow を使用したクラシック CNN ネットワーク Vgg の実装

先週は、古典的な CNN ネットワーク AlexNet が画像分類に与える影響についてお話ししました...

Nuscenes 最新 SOTA | DynamicBEV が PETRv2/BEVDepth を上回る!

1. 論文情報2. はじめにこの論文では、自動運転、ロボット工学、監視などのアプリケーションに不可...

IoTとAIがスマートホームにもたらす効果

スマートシティ建設が国家戦略となり、ハイテクが急速に発展するにつれて、スマートシティはバージョン1....

DAMOアカデミーAIが中国科学技術博物館に展示され、AIが認識した初のCOVID-19 CTスキャンが科学技術による防疫努力の歴史的証人となる

5月29日、全国科学技術労働者の日が近づく中、アリババDAMOアカデミーのAIによって識別されラベル...

AIトレーニングの裏話を公開:専門家だけでなく、世界中の無数のオフィスワーカーもAIの進化に貢献している

要点: AI システムが学習する前に、入力されたデータにラベルを付ける作業が必要です。これは、自動運...

AIの未来: 次世代の生成モデルの探究

ニシャ・アーヤ著翻訳者 | ブガッティレビュー | Chonglou生成 AI には現在どのような機...