3400 コミ​​ットを統合します。バッチサイズの選択に役立つフレームワーク、PyTorch 1.10 がリリースされました

3400 コミ​​ットを統合します。バッチサイズの選択に役立つフレームワーク、PyTorch 1.10 がリリースされました

[[431318]]

10月21日の夜、ついにPyTorch 1.10がリリースされました!

このアップデートには、バージョン 1.9 以降の 426 人の貢献者による 3,400 件を超えるコミットが含まれています。アップデートの主な目的は、PyTorch のトレーニング、パフォーマンス、開発者の使いやすさを向上させることです。

  1. CUDA Graphs API を統合して、CUDA を呼び出す際の CPU オーバーヘッドを削減します。
  2. FX、torch.special、nn.ModuleParametrization などのいくつかのフロントエンド API がベータ版から安定版に移行しました。
  3. JIT コンパイラーの自動融合のサポートでは、GPU に加えて CPU もサポートされるようになりました。
  4. Android NNAPI サポートはベータ版で利用可能です。

フロントエンドAPI

FXの方が安定しています。 FX は、PyTorch プログラムを変換および縮小するために使用できる Python プラットフォームです。関数および nn.Module インスタンスでの Python から Python への変換を容易にします。 FX ツールキットは、Python 言語全体ではなく、Python 言語のサブセットをサポートして簡単に変換できるようにすることを目的としています。 1.10 のリリースにより、FX は安定しています。

SciPy に似た特別なモジュール torch.special が追加され、現在安定して使用可能です。このモジュールには、ガンマ、ベッセル、ガウスの誤差関数を含む 30 個の操作が含まれています。

nn.Module のパラメータ化により、ユーザーは nn.Module 自体を変更することなく、任意のパラメータをパラメータ化できます。このバージョンでは、重みの正規化 (weight_norm)、直交パラメータ化 (行列制約と部分的プルーニング) も追加され、ユーザーはより柔軟に独自のパラメータ化を作成できます。

ベータ版では、PyTorch は CUDA Graphs API を統合して、CUDA を呼び出す際の CPU オーバーヘッドを削減します。CUDA Graphs は、CPU に依存する cuda ワークロードの CPU オーバーヘッドを大幅に削減し、GPU 使用率を高めることでパフォーマンスを向上させます。分散ワークロードの場合、CUDA グラフはジッターを削減することもできます。並列ワークロードは最も遅いワーカーを待機する必要があるため、ジッターを削減すると全体的な並列効率が向上します。

この統合により、CUDA グラフによってキャプチャされたネットワーク コンポーネントと、グラフの制限によりキャプチャできないネットワークの部分との間のシームレスな相互運用が可能になります。

PyTorch の複素テンソルの共役 ( torch.conj() ) は定数時間の O(1) 演算となり、入力 Tensor の共役ビット単位のビューを返します。これは torch.is_conj() を呼び出すことで検証できます。これはすでに、行列乗算、ドット積などのさまざまな他の PyTorch 演算を活用して共役を融合しており、CPU と CUDA の両方でパフォーマンスが大幅に向上し、必要なメモリが少なくなります。

分散トレーニング

バージョン 1.10 では、torch.distributed パッケージの多くの機能がベータ版から安定版に移行しました。

  1. リモート モジュールを使用すると、RPC がユーザーに対して透過的であるローカル モジュールを使用する場合と同じように、ユーザーはリモートで操作できます。
  2. DDP 通信フックを使用すると、ユーザーは DDP がプロセス間で勾配を同期する方法をオーバーライドできます。
  3. ZeroredUndanyOptimizer を DistributedDataParallel と併用すると、プロセスごとのオプティマイザー状態のサイズを縮小できます。この安定したリリースでは、異なるデータ並列ワーカーへの不均一な入力も処理できるようになりました。

パフォーマンス最適化ツール

TorchScript では、正常にコンパイルするために、ソース コードに型注釈が厳密に必要です。長い間、ユーザーは試行錯誤して不足している型注釈や間違った型注釈を追加するしかなく、つまり Torch.Jit.Script によって生成された型チェック エラーを 1 つずつ修正することでバグを解決するしかなく、非常に時間がかかり非効率的でした。現在、PyTorch 1.10 では、MonkeyType などの既存のツールを活用して、torch.jit.script のプロファイル指向入力が可能になり、プロセスがより簡単、高速、効率的になります。

PyTorch 1.10 では、CPU 用の LLVM ベースの JIT コンパイラが追加され、Torch ライブラリ呼び出しのシーケンスを融合してパフォーマンスが向上します。以前のバージョンでは GPU でこの機能がありましたが、1.10 では初めて CPU にコンパイルが導入されました。

PyTorch Profiler は、コード内で最も時間またはメモリコストが高い実行ステップを見つけ、GPU と CPU 間のワークロード分散を視覚化することを目的としています。現在のバージョン 1.10 には、主に次の機能が含まれています。

  1. 拡張メモリ ビュー: これにより、ユーザーはメモリの使用状況をよりよく理解できるようになり、プログラム実行中のさまざまな時点でアクティブなメモリ割り当てを表示することで、開発者がメモリ エラーを回避できるようになります。
  2. 強化されたカーネル ビュー: 追加の列には、グリッドとブロック サイズ、共有メモリの使用量、スレッドごとのレジスタが表示されます。これらのツールは、バッチ サイズの変更、TensorCore、メモリ削減手法などを開発者に推奨できます。
  3. 分散トレーニング: Gloo は分散トレーニング ジョブをサポートするようになりました。
  4. TensorCore: このツールは、Tensor Core (TC) の使用状況を表示し、データ サイエンティストやフレームワーク開発者に推奨事項を提供します。
  5. NVTX: NVTX マーカーのサポートは、古い autograd プロファイラーから移植されています。
  6. モバイル デバイスのプロファイリングのサポート: PyTorch プロファイラーは TorchScript およびモバイル バックエンドとより適切に統合され、モバイル ワークロードのトレースの収集をサポートするようになりました。

モバイル上の PyTorch

昨年、PyTorch は Android Neural Network API (NNAPI) のプロトタイプ サポートをリリースしました。NNAPI の主な機能は、Android アプリケーションが携帯電話チップの最も効率的な部分を使用してニューラル ネットワークを実行できるようにすることです。サポートされているデバイスには、主に GPU (グラフィックス プロセッシング ユニット) と NPU (専用ニューラル プロセッシング ユニット) が含まれます。

新しいバージョンでは、PyTorch は、ロード時のより柔軟な形状のサポートや、テストのためにホスト上でモデルを実行する機能など、演算子 (op) の範囲をさらに広げています。

さらに、オブジェクト検出の例に転移学習が追加されました。

<<:  レポート:中国の人工知能都市ランキングで北京が1位に

>>:  中国の人工知能産業における4つの大きなトレンド

ブログ    
ブログ    
ブログ    

推薦する

Web攻撃検出のための機械学習の深層実践

1. 概要1. 従来のWAFの問題点従来の WAF は、ルールとブラックリストおよびホワイトリストに...

...

メッシのサッカーの試合とリーグ・オブ・レジェンドについての解説:OpenAI GPT-4ビジュアルAPIは開発者が新しい方法を作成するために使用されています

記事の冒頭では、サッカーの試合解説ビデオを見てみましょう。それは正しいように聞こえませんか?あなたの...

心が開かれました!将来、人工知能がもたらす素晴らしい生活は、あなたが想像する以上のものになるかもしれません...

人工知能といえば、多くの人が「未来の技術」という遠近感、移動機能を備えた空中の高層ビル、いつでも世界...

人工知能と機械学習でよく使われるアルゴリズムの概要と、よく使われる各アルゴリズムの精度の比較

[[319322]]この記事では、一般的に使用されている機械学習アルゴリズムの概要と、一般的に使用さ...

Googleなどのテクノロジー大手が新技術を発表:人工知能が自ら進化できるようにする

ニューヨーク・タイムズの最近の報道によると、Googleなどのテクノロジー大手は、人工知能の専門家不...

魔法は魔法に勝る、AIデータにはAIソリューションが必要

Kompprise が委託した「非構造化データ管理の現状」調査によると、人工知能は IT およびビジ...

MLP および Re-Parameter シリーズに関する人気の論文を含む、注目メカニズムの 17 個の PyTorch 実装

[[415286]]注意メカニズムは、最初はコンピューター ビジョンで使用され、その後 NLP の分...

人工知能は認知と表現のギャップを埋めている

人工知能により、認知能力は高いが表現能力が限られている人でも、自分の考えを表現したり、物語を創作した...

SFから現実へ:人工知能の歴史と将来の可能性

人工知能は、SFで概念化されて以来、長い道のりを歩んできました。かつては想像上のものだったアイデアが...

Redis に基づく分散ロックと Redlock アルゴリズム

[[403381]]この記事はWeChatの公開アカウント「UP Technology Contro...

ルールベースのAIと機械学習の主な違いは、さまざまな業界の企業が検討し、実装している点です。

さまざまな業界の企業が、ビッグデータからロボット工学まで、ビジネスプロセスの自動化、顧客体験の向上、...

ElevenLabs、元の話し手の声と感情を維持するAI翻訳吹き替え機能を発表

AIテキスト読み上げ会社ElevenLabsは10月11日、火曜日にAI Dubbingを発表した。...

...

...