AI および機械学習モデルの作成に必要なスキルセットをより深く理解するには、機械学習ソフトウェアによって段階的に実行されるモデル作成プロセスと、事前に定義された成功基準を満たすモデルを作成する際の課題を理解する必要があります。 機械学習ソフトウェアはデータを使用してモデルをトレーニングします。このモデルは AI 製品を構成し、AI 入力データを定期的に更新することで時間の経過とともに再利用できます。機械学習ソフトウェアには、次の 4 つの基本的な学習タイプがあります。
特定のデータ セットに適合する機械学習ソフトウェアで使用する最適な統計アルゴリズムを決定するには、データ サイエンスの専門知識が必要です。 数多くの統計アルゴリズムの中でも、特に人気のあるものは次のとおりです。感情分析、スパム検出、推奨のためのナイーブ ベイズ、結果予測のための決定木、複数の決定木をマージして予測を改善できるランダム フォレスト、バイナリ分類 (A または B) のためのロジスティック回帰、市場セグメンテーションなどのデータを再編成するための AdaBoost、ガウス混合、Recommender、K-Means クラスタリング。 AIと機械学習モデルのトレーニング機械学習には、トレーニング、検証、テストという 3 つの異なる学習 (トレーニングとも呼ばれる) フェーズがあります。始める前に、データが適切に整理され、正しいことを確認する必要があります。概念は単純ですが、データを順序に変換するのは時間がかかり、細かい作業が必要なプロセスであり、手作業が必要になる場合があります。 目標は、重複、タイプミス、切断のないデータを作成することです。クリーニング後、データは 3 つのトレーニング フェーズごとに 3 つのグループにランダムに分割されました。ランダムなデータ分割の目的は、データ選択の偏りを防ぐことです。 モデル作成に関連する定義をいくつか示します。
トレーニングを開始する前に (フェーズ 1)、機械学習ソフトウェアがデータから重要な手がかりを継続的に取得して学習できるように、データにラベルを付けることが重要です。教師なし学習ではラベル付けは必要ありません。機械学習ソフトウェアのデフォルトのパラメータ値を使用して起動することも、パラメータを個別に変更することもできます。 精度テストモデルトレーニング フェーズが成功基準を満たすと、検証フェーズに入ります。最初のパスでは新しいデータセットが使用されます。結果が良ければ、最終テスト段階に進みます。 期待した結果が得られない場合は、機械学習ソフトウェアが新しいパターンを示さなくなるまで、またはパスの最大数に達するまで、機械学習ソフトウェアを使用してデータに追加のパスを実行できます。トレーニングが進むにつれて、これらのパラメータは機械学習ソフトウェアまたはそれを管理する人々によって自動的に変更されます。 テスト段階は、新しいデータセットに対する「最終試験」ですが、今回は「補助」データラベル(教師あり学習にのみ使用)がありません。ソフトウェアが標準テストに合格した場合、それは実用的なモデルとなります。そうでない場合は、トレーニングを続けてください。これまでと同様に、テスト チームは手動でパラメータを変更することも、トレーニング プロセス中に機械学習ソフトウェアにパラメータを自動的に変更させることもできます。 AI における機械学習とは、機械学習ソフトウェアに公開されたデータを繰り返し再生することです。パラメータは機械学習ソフトウェアによって自動的かつ反復的に変更され (手動で変更される場合もあります)、各テストの後にモデルがよりスマートになります。機械学習ソフトウェアは、新しいパターンが検出されなくなったと判断するまで、またはパスの最大数に達して停止するまで、データに対して複数回のパスを実行し続けます。 AIモデルの継続的なメンテナンス警戒(監視)はAIの自由を享受するための代償です。 AI モデルのパフォーマンスを判断する一般的なアプローチは、実際のパフォーマンスが AI の予測とどの程度一致しているかを監視することです。 AI 予測のパフォーマンスが悪かった場合は、機械学習モデルのトレーニング プロセスに再度入り、最新のデータを使用してモデルを修正する必要があります。 入力データは時間の経過とともに簡単に変化する可能性があることを覚えておくことが重要です。これは、トランザクションにおけるデータ ドリフトとして知られています。データドリフトにより AI モデルの精度が失われる可能性があるため、データドリフトを早期に警告することが、問題に先手を打つために重要です。 Fiddler、Neptune、Azure ML など、データドリフトを追跡して外れ値を見つけることができる AI ツールは早期警告を提供できるため、機械学習を更新してデータの問題を早期に解決できます。 |
>>: 高齢者介護の問題がますます顕著になり、人工知能が大きな注目を集めている
コンピュータや機械は睡眠なしでも動作できますが、科学者たちは最近、人間と同様に一部の AI も「睡眠...
情報セキュリティの専門家は、「生成的敵対ネットワーク」(GAN)がオンラインセキュリティをどのように...
AI技術の飛躍的な発展に伴い、攻撃者はAIの武器化を加速させ、ソーシャルエンジニアリング技術と組み合...
51CTO.com+プラットフォームは、オリジナルの技術コンテンツの選択と絶妙なレイアウトを通じて、...
この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...
RPA は、データ入力やその他の単純作業を効率化することで、さまざまな業界の組織のビジネス プロセス...
7月9日、2020年世界人工知能大会(WAIC)クラウドサミットが正式に開幕した。クアルコムのクリス...
最近、業界調査会社ガートナーは、AI プロジェクトの 85% は CIO に引き渡されないという大胆...
本日、「0からNへ・原始開拓」をテーマにした2021年漢王科技秋季新製品発表会がオンラインで開催され...
[[398369]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...
ヒント エンジニアリング技術は、大規模な言語モデルが検索強化型生成システムで代名詞などの複雑なコア参...