自動運転システムのテストに関する簡単な説明

自動運転システムのテストに関する簡単な説明

1. 自動運転システムレベルテストの基本理論

1.1 自動運転テストシナリオの構成

1.1.1 フレームワーク

※この画像は中国自動車情報ネットワークの資料を基に作成しました

1.1.2 シーンソース

  • リアルな運転記録シーン
  • 専門家の経験がシナリオを構築する(事前の知識)

1.1.3 実際の運転シナリオのソース

実際の運転シーンの処理フロー:

※この画像は中国自動車情報ネットワークの資料を基に作成しました

車両側録画シーン:

※この画像は中国自動車情報ネットワークの資料を基に作成しました

シーン収録シーン:

※この画像は中国自動車情報ネットワークの資料を基に作成しました

専門家の経験構築:

1.2 複数の分析次元による自動駐車テストケースフレームワークの構築

※この図は、Meng Haolan らによる論文「インテリジェント車両自動駐車システムのテスト方法」を参照しています。

1.3 テストシナリオから特定のテストケースを発展させる

※この数字はトヨタ研究者会議資料に基づく

1.4 車両システムレベルのテストの実施

適切な人が適切な場所でテスト車両を扱い、適切なテストツールを使用して、テストを安全に実施し、テストプロセスを詳細に記録します。

1.5 テスト結果を分析するための原則

1.5.1 SOTIF - 開発原則

1.5.2 SOTIF - 開発目標(安全性重視、機能重視)

1.5.3 買収の深刻度の分類

「買収」の定義、分類、命名:

タイプI接続:接続されていない場合は衝突が発生します

システム設計の動作範囲 (ODD) 内で処理されない場合、衝突が発生するとテイクオーバーが発生します。

自動運転システムの設計不足と法令違反による乗っ取り

タイプII接続:接続しないと衝突が発生します

システム設計動作範囲(ODD)外で衝突が発生した場合、対処しないと引き継ぎが発生します。

タイプIII接続: 接続しても衝突は発生しませんが、誤接続とはみなされません。

テイクオーバーは、自動運転システムの設計が不十分なために、自動運転車の運転行動が人間の期待や道徳的感情などを満たさなくなった場合に発生します。

システムのダウングレードと終了引き継ぎメカニズムがトリガーされ、システムリマインダー後に引き継ぎが行われます

タイプIVの配管接続:接続しなくても衝突を起こさない誤接続

危険がない場合、ヒューマンエラーが引き起こされ、人間による乗っ取りや手動運転につながる

1.6 階層化テストとツールチェーン

1.6.1 階層化テスト

※この写真は中国自動車技術研究センターの会議資料より引用

1.6.2 テストツールチェーン

※この写真は中国自動車技術研究センターの会議資料より引用

2. テストとデータ

2.1 テスト駆動開発システム

2.2 テストとデータの関係のまとめ

現在、AIではアルゴリズムモデルとデータを必要とするディープラーニングが主流の技術となっています。

データについては、いくつかの条件を満たす必要があります。

  • データアノテーション法はデータ駆動型アルゴリズムモデルに適している
  • アプリケーションシナリオではデータが適切に分散される必要がある
  • アルゴリズムのパフォーマンスが悪い側面は、対応するデータで継続的に拡張する必要がある。

テストとデータの関係の概要:

  • テスト結果は、データ収集とスクリーニング方法の方向性を示します。
  • テストでは大量のデータが提供されます。自作のフリートデータ収集や量産フリートデータ収集など、SOP の前後でテストデータを収集できます。
  • テストでは、トリガー (記録、ラベル)、視覚化 (分析、デバッグ)、テスト自動化などのツール チェーンが提供されます。

<<:  第 5 のインテリジェント運転認識技術を深く掘り下げて、低照度シーン認識の問題点を解決し、大量生産を実現し、コストを低く抑えるにはどうすればよいでしょうか。

>>:  LiDARとTexas Instrumentsチップを搭載した最新のL3自動運転アーキテクチャの分析

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

グラフやグラフニューラルネットワークについて学びたいですか?論文を読むより良い方法はありません。

グラフ埋め込み、グラフ表現、グラフ分類、グラフニューラルネットワーク、この記事では必要なグラフモデリ...

ユニサウンド、50倍の性能を誇る世界初のIoT向けAIチップを発売

業界をリードするモノのインターネット(IoT)人工知能サービス企業であるUnisoundは、約3年間...

Microsoft OpenAI はヒューマノイドロボットに 1 億ドルを投資する予定です。ネットユーザーはマスク氏に叫んだ

今年初め、マイクロソフトとOpenAIがヒューマノイドロボットのスタートアップに多額の資金を投資して...

北京航空航天大学はモードの壁を打ち破り、可視光と赤外線モードにわたる普遍的な物理的対抗手段を開発しました。

近年、視覚システムのセキュリティ評価の研究が徐々に深まっています。研究者は、メガネ、ステッカー、衣服...

ソフトウェアが自動車を飲み込んでいる、伝統的な自動車産業は消滅の危機に瀕しているのでしょうか?

[[440100]]半導体チップの継続的な不足が世界の自動車生産の減少につながるとの予測が高まって...

...

2019 年の AI 統計と重要な事実

[[280183]] [51CTO.com クイック翻訳] 人工知能(AI)は日々驚異的なスピードで...

実践編 | アポロレーンチェンジの詳しい説明

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

複数の負荷分散アルゴリズムとそのJavaコード実装

まず、負荷分散とは何かを紹介します(百科事典より)負荷分散は既存のネットワーク構造に基づいて構築され...

プログラマーアルゴリズムの基礎 - 貪欲アルゴリズム

序文貪欲は人間が本来持つ能力であり、貪欲アルゴリズムとは貪欲な意思決定に基づいた全体計画の総称です。...

人工知能時代のデータストレージの未来

2024 年は、テクノロジーとデータの状況に大きな変化が起こる年になると予想されています。生成 AI...

...

大規模モデルの微調整には人間のデータに頼らなければならないのでしょうか? DeepMind: フィードバック付きの自己トレーニングの方が優れている

皆さんもご存知のとおり、大規模言語モデル (LLM) はディープラーニングの状況を変えつつあり、人間...

...