AIがタンパク質構造を予測し、サイエンス誌とネイチャー誌の年間技術革新として掲載され、無限の可能性を秘めている

AIがタンパク質構造を予測し、サイエンス誌とネイチャー誌の年間技術革新として掲載され、無限の可能性を秘めている

2021 年に AI 分野で最も画期的な賞を授与するとしたら、誰を選びますか? 「サイエンス」と「ネイチャー」が出した答えは、どちらも「タンパク質構造予測」です。

今年7月、タンパク質構造を予測する2つの主要なAIアルゴリズムが相次いでオープンソース化された。1つはDeepMind社の「AphaFold2」、もう1つはワシントン大学などが開発した「RoseTTAFold」である。現在、これら 2 つのアルゴリズムは、Science によって 2021 年の画期的な成果として評価されています。

タンパク質中のアミノ酸の長い鎖がねじれ、折り畳まれ、絡み合って複雑な三次元構造を形成し、その解読が困難、あるいは不可能になることはよく知られています。数十年にわたり、科学者たちは、遺伝子配列からタンパク質の構造形状を予測するだけで、生命の仕組みに関する新たな洞察の世界を切り開くことを望んできたが、進歩は遅い。

DeepMind が、タンパク質の構造を計算によって予測する方法が初めて発見されたと発表したまでは。 AIは、類似の構造を知らなくても、原子レベルでタンパク質の構造を正確に予測できます。

[[441192]]

DeepMindによると、AlphaFoldは定期的に原子レベルでタンパク質構造を予測できるという。技術的には多重配列アライメントとディープラーニングアルゴリズム設計を使用し、タンパク質構造に関する物理的および生物学的知識を組み合わせて予測結果を向上させる。 AlphaFold の画期的な研究成果は、研究者が特定の病気を引き起こすメカニズムを解明し、薬剤の設計、農作物の収穫量の増加、プラスチックを分解できる「スーパー酵素」の開発への道を開くのに役立つでしょう。

AlphaFold の論文は 7 月に Nature 誌に掲載されました。論文のアドレスは次のとおりです: https://www.nature.com/articles/s41586-021-03819-2

最近、Alphafoldの創設者の一人であるジョン・ジャンパー氏も、Nature誌によって2021年のトップ10科学者の一人に選ばれました。

[[441193]]

ジョン・ジャンパー

2018年にタンパク質構造予測コンペティション(CASP)で注目を集めた第1世代のAlphaFoldから、2021年にAlphaFold2が正式にオープンソースリリースされるまで、ジョン・ジャンパーはDeepMindの研究チームを率いて数々の困難を克服し、AlphaFold2が2/3のタンパク質構造予測という優れた結果を達成することを可能にしました。

同じくタンパク質構造予測研究を行っているRoseTTAFoldも、Science誌の2021年のブレークスルーに選ばれました。

RoseTTAFold は、ワシントン大学医学部のタンパク質設計研究所がハーバード大学、テキサス大学サウスウェスタン医療センター、ケンブリッジ大学、ローレンス・バークレー国立研究所などの機関と共同で開発した、ディープラーニングに基づくタンパク質予測ツールです。 RoseTTAFold は、AlphaFold2 に匹敵する超高精度を実現しますが、より高速で、必要なコンピューター処理能力も少なくなります。

RoseTTAFold は Science 誌に掲載されました。論文のアドレスは https://www.science.org/doi/abs/10.1126/science.abj8754 です。

構造的には、RoseTTAFold は 3 トラック ニューラル ネットワークであり、タンパク質配列のパターン、アミノ酸同士の相互作用、およびタンパク質の可能な 3 次元構造を考慮できます。この構造では、1 次元、2 次元、3 次元の情報が行き来し、ニューラル ネットワークはタンパク質の化学部分とその折り畳まれた構造についての推論に集中することができます。

驚くべきことに、12年前にはタンパク質構造予測の問題は決して解決されないと信じる科学者もいましたが、今日ではそれが現実になっています。人工知能がもたらした最大の進歩は、「不可能」を「可能」に変えることです。

より広い視点から見ると、AIはタンパク質構造予測に変化をもたらすだけでなく、科学研究分野全体に活用できる大きな可能性を秘めています。そのため、今年はAI + 数学、AI + 化学、AI + 医学など、AI for Scienceのテーマが注目を集めています。

おそらく、今後 2 年間で AI + 科学研究においてさらなるブレークスルーが起こり、誰もがそれに細心の注意を払うことになるでしょう。

<<:  中国科学院研究員蔡少偉:SATソルバーEDA基本エンジン

>>:  人間の脳細胞は、マトリックスのように、AIよりも速く、エネルギー効率よく、ペトリ皿の中でゲームをすることを学ぶ

ブログ    
ブログ    

推薦する

清華大学の博士が「チップレット・アクチュアリー」サミットを提案!ムーアの法則に近づくほど、マルチチップ統合のコスト効率は向上する。

Chiplet は、製品の歩留まり、パッケージの歩留まり、さまざまなコストなどを考慮しながら、大規...

スマートホームが不動産市場の動向に与える影響

今日、多くの人がスマートホームが提供するものを活用したいと考えています。スマートホームは、快適で便利...

ControlNetの作者が新作を発表:数百万のデータを使ったトレーニング、レイヤー設計の先駆けとなるAI画像生成

画像を生成するための大規模なモデルがコンピュータービジョンやグラフィックスの基礎となっている一方で、...

オープンソースの小規模モデルに基づく、GPT-4 を上回る 3 つのエージェント

本当の「三人の靴屋は一人の諸葛亮より優れている」 -オープンソースの小規模モデルに基づく 3 つのエ...

ディープフェイクで映画を作る時代が来た:ディズニーが高解像度の顔を変えるアルゴリズムを公開

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

AIはHRにどのように役立つのでしょうか?

全国的に人材不足が進む中、テクノロジーは雇用者が厳しい市場で最高の人材を見つけるのに役立ちますが、人...

Google GlassのDIY貧弱版、カスタムジェスチャーコントロール、Raspberry Piがまたもや新しい遊び方を開発

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

スマートデバイスとエッジコンピューティングはどのように発展するのでしょうか?

エッジコンピューティングが増加しています。 AI とネットワークの進歩を組み合わせて、より強力なロー...

ついに誰かがナレッジグラフをわかりやすく説明してくれた

[[382731]]この記事は、劉宇、趙紅宇らが執筆したWeChatパブリックアカウント「ビッグデー...

スマートリテール特別セッションの登録が開始されました。Baidu Brainが上海でAI+リテールの新たな活用法について議論します。

小売業と聞いて何を思い浮かべますか?独身の日のお買い物ラッシュ?クリスマス カーニバル?それとも階下...

AI導入を成功させるために最も重要なスキル

実践により、人工知能 (AI) が適切に導入されなければ多くのリスクをもたらすことがわかっているため...