AIがタンパク質構造を予測し、サイエンス誌とネイチャー誌の年間技術革新として掲載され、無限の可能性を秘めている

AIがタンパク質構造を予測し、サイエンス誌とネイチャー誌の年間技術革新として掲載され、無限の可能性を秘めている

2021 年に AI 分野で最も画期的な賞を授与するとしたら、誰を選びますか? 「サイエンス」と「ネイチャー」が出した答えは、どちらも「タンパク質構造予測」です。

今年7月、タンパク質構造を予測する2つの主要なAIアルゴリズムが相次いでオープンソース化された。1つはDeepMind社の「AphaFold2」、もう1つはワシントン大学などが開発した「RoseTTAFold」である。現在、これら 2 つのアルゴリズムは、Science によって 2021 年の画期的な成果として評価されています。

タンパク質中のアミノ酸の長い鎖がねじれ、折り畳まれ、絡み合って複雑な三次元構造を形成し、その解読が困難、あるいは不可能になることはよく知られています。数十年にわたり、科学者たちは、遺伝子配列からタンパク質の構造形状を予測するだけで、生命の仕組みに関する新たな洞察の世界を切り開くことを望んできたが、進歩は遅い。

DeepMind が、タンパク質の構造を計算によって予測する方法が初めて発見されたと発表したまでは。 AIは、類似の構造を知らなくても、原子レベルでタンパク質の構造を正確に予測できます。

[[441192]]

DeepMindによると、AlphaFoldは定期的に原子レベルでタンパク質構造を予測できるという。技術的には多重配列アライメントとディープラーニングアルゴリズム設計を使用し、タンパク質構造に関する物理的および生物学的知識を組み合わせて予測結果を向上させる。 AlphaFold の画期的な研究成果は、研究者が特定の病気を引き起こすメカニズムを解明し、薬剤の設計、農作物の収穫量の増加、プラスチックを分解できる「スーパー酵素」の開発への道を開くのに役立つでしょう。

AlphaFold の論文は 7 月に Nature 誌に掲載されました。論文のアドレスは次のとおりです: https://www.nature.com/articles/s41586-021-03819-2

最近、Alphafoldの創設者の一人であるジョン・ジャンパー氏も、Nature誌によって2021年のトップ10科学者の一人に選ばれました。

[[441193]]

ジョン・ジャンパー

2018年にタンパク質構造予測コンペティション(CASP)で注目を集めた第1世代のAlphaFoldから、2021年にAlphaFold2が正式にオープンソースリリースされるまで、ジョン・ジャンパーはDeepMindの研究チームを率いて数々の困難を克服し、AlphaFold2が2/3のタンパク質構造予測という優れた結果を達成することを可能にしました。

同じくタンパク質構造予測研究を行っているRoseTTAFoldも、Science誌の2021年のブレークスルーに選ばれました。

RoseTTAFold は、ワシントン大学医学部のタンパク質設計研究所がハーバード大学、テキサス大学サウスウェスタン医療センター、ケンブリッジ大学、ローレンス・バークレー国立研究所などの機関と共同で開発した、ディープラーニングに基づくタンパク質予測ツールです。 RoseTTAFold は、AlphaFold2 に匹敵する超高精度を実現しますが、より高速で、必要なコンピューター処理能力も少なくなります。

RoseTTAFold は Science 誌に掲載されました。論文のアドレスは https://www.science.org/doi/abs/10.1126/science.abj8754 です。

構造的には、RoseTTAFold は 3 トラック ニューラル ネットワークであり、タンパク質配列のパターン、アミノ酸同士の相互作用、およびタンパク質の可能な 3 次元構造を考慮できます。この構造では、1 次元、2 次元、3 次元の情報が行き来し、ニューラル ネットワークはタンパク質の化学部分とその折り畳まれた構造についての推論に集中することができます。

驚くべきことに、12年前にはタンパク質構造予測の問題は決して解決されないと信じる科学者もいましたが、今日ではそれが現実になっています。人工知能がもたらした最大の進歩は、「不可能」を「可能」に変えることです。

より広い視点から見ると、AIはタンパク質構造予測に変化をもたらすだけでなく、科学研究分野全体に活用できる大きな可能性を秘めています。そのため、今年はAI + 数学、AI + 化学、AI + 医学など、AI for Scienceのテーマが注目を集めています。

おそらく、今後 2 年間で AI + 科学研究においてさらなるブレークスルーが起こり、誰もがそれに細心の注意を払うことになるでしょう。

<<:  中国科学院研究員蔡少偉:SATソルバーEDA基本エンジン

>>:  人間の脳細胞は、マトリックスのように、AIよりも速く、エネルギー効率よく、ペトリ皿の中でゲームをすることを学ぶ

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

デジタルホーム: IoTとAIで家電をもっとスマートに

洗濯機、照明、スピーカー、テレビ、カメラなど、日常的に使用するデバイスが、離れた場所からあなたと通信...

「Google版SORA」はぼやけたグラフィックで嘲笑されたが、世界シミュレーターとして新たな一歩を踏み出した。

インタラクティブな仮想世界を作成するために使用される、Google の 110 億のパラメータ Ge...

2010年以降、MLコンピューティングパワーの需要は100億ドル増加し、6か月で2倍になり、ディープラーニングは画期的な分野となった。

計算能力、データ、アルゴリズムは、現代の機械学習 (ML) の進歩を導く 3 つの基本的な要素です。...

CNNが画像の特徴を自動的に抽出できる理由

1. はじめに従来の機械学習のシナリオのほとんどでは、まず特徴エンジニアリングなどの方法を通じて特徴...

Python で機械学習を簡単に

ナイーブ ベイズ分類器を使用して、現実世界の機械学習の問題を解決します。ナイーブベイズナイーブベイズ...

日常生活における人工知能の応用トップ 10

[51CTO.com クイック翻訳]経済社会の発展に伴い、テクノロジーはますます複雑になっています...

...

...

AIはサプライヤーが直面する5つの大きなリスクを軽減するのに役立ちます

人工知能は現代のビジネス界に多くの変化をもたらしています。多くの企業が AI を活用して顧客をより深...

小売業界のトレンド: 人工知能からクーポンコードまで

[[436501]]機械学習と人工知能 (AI) の登場により、企業のビジネスのやり方は大きく変化し...

機械学習愛好家必読ガイド

[[273182]]このガイドは、機械学習 (ML) に興味があるが、どこから始めればよいかわからな...

将来、人工知能ロボットに置き換えられる可能性のある10の仕事

専門家は、将来的には職業の約 70% が自動化されると予測しています。運転手、教師、ベビーシッター、...

公式論文コードが公開されました。OpenAIはGPT-3のイメージ版をどのように実装したのでしょうか?

OpenAIはDALL-Eに関するいくつかの論文と実装コードを公開しました。今年初め、OpenAI...

超過年齢の移民労働者への「許可命令」が白熱した議論を巻き起こす。建設ロボット代替の潮流が到来

長年にわたり、数億人の出稼ぎ労働者が経済建設と社会発展に積極的に参加し、中国の近代化推進に多大な貢献...

...