人工知能がサイバーセキュリティを変える5つの方法

人工知能がサイバーセキュリティを変える5つの方法

人工知能は、ネットワーク セキュリティの攻撃側と防御側の両方で重要な役割を果たす中立的なテクノロジです。ネットワーク攻撃や不正なデータ アクセスに使用される人工知能テクノロジが増えるにつれて、防御側における人工知能テクノロジへの依存はさらに高まります。サイバーセキュリティの専門家やソフトウェアプロバイダーは、攻撃者がセキュリティ対策を回避しにくくし、悪意のある行為者を検出しやすくするために人工知能を使用しています。

私たちの生活がますますデジタル化されるにつれ、個人も組織もプライバシーを保護し、サイバー犯罪者から身を守るために AI をより一層活用する必要が出てきます。ここでは、人工知能がサイバーセキュリティに変化をもたらす 5 つの方法を紹介します。

[[441317]]

機械学習により脅威検出が向上

組織はサイバー攻撃を事前に特定し、攻撃者が目的を達成するのを防ぐ必要があります。 AI ベースのサイバーセキュリティの可能性は、誰にでもサービスとして提供されるようになることです。機械学習は人工知能の分野であり、コンピューターがアルゴリズムを通じて受け取ったデータから学習し、プロセスに必要な改善を加えることを可能にします。つまり、機械学習により、コンピューターは人間よりもはるかに高い精度で危険を予測し、異常を検出できるようになり、危険の検出と特定に非常に効果的であることが証明されています。

より優れた認証とパスワード保護

開発者は AI を活用して生体認証を改善し、欠陥を排除して信頼性の高いシステムを構築しています。たとえば、Apple の顔認識システム「Face ID」は、重要な関連性やパターンを探し、内蔵の赤外線センサーとニューラル エンジンを使用してユーザーの顔の特徴を分析することによって機能します。 AI(人工知能)アルゴリズムは、さまざまな照明条件に適応し、髪型の変更、ひげの生やし、帽子の着用などの変化を修正します。この技術は、正当な本人確認を回避することをより困難にするために、今後も広く使用されるでしょう。

フィッシングの検出と防止を高速化

フィッシングは、ハッカーがフィッシングメールなどのフィッシングを通じてペイロードを配信しようとする一般的なサイバー攻撃の戦術であり、ハッカーが被害者のシステムにアクセスしてランサムウェアをインストールする主な方法です。幸いなことに、人工知能と機械学習 (AI-ML) アルゴリズムは、フィッシング攻撃を防止し、撃退するのに役立ちます。 AI-ML は、絶えず変化し進化する多数のアクティブなフィッシング ソースを検出して追跡し、人間よりもはるかに迅速に対応して修復することができます。さらに、AI-ML は、特定の地理的場所だけでなく、世界中のフィッシングの脅威をスキャンし、有効な Web サイトと不正な Web サイトをすばやく区別できます。

積極的な脆弱性管理

毎年何千ものソフトウェアやアプリケーションの脆弱性を管理するのは、人的資源や従来のテクノロジーでは困難ですが、AI を使用すればこの問題をより簡単に処理できます。 AI-ML ベースのシステムは、ハッカーが脆弱性を悪用するのを待つことはありません。代わりに、AI ベースのソリューションは、ダーク ウェブ上のハッカー チャット、ハッカーの評判、採用パターンなど、多くの情報ソースを統合して組織の情報システムの潜在的な弱点を積極的に探し、データを使用して危険がいつ発生するか、脆弱なターゲットをどのように脅かすかを予測します。

強化されたサイバーセキュリティ運用

セキュリティ ポリシーの開発と、サイトのセキュリティを含む組織のネットワーク トポロジのマッピングは、ネットワーク セキュリティの 2 つの主要なコンポーネントであり、どちらのアクティビティも通常は時間がかかります。幸いなことに、ネットワーク トラフィックを分析、学習し、セキュリティ対策を推奨する人工知能によって、このプロセスは容易になっています。時間の節約になるだけでなく、サイバーセキュリティの脅威の監視に費やす労力やリソースを大幅に節約できるため、組織のセキュリティ技術や機能の向上に活用できます。

[この記事は51CTOコラムニスト「牛安全」によるオリジナル記事です。転載する場合は牛安全(WeChatパブリックアカウントID:gooann-sectv)から許可を得てください]

この著者の他の記事を読むにはここをクリックしてください

<<:  AIをうまく活用したいなら、この2つの問題を早急に解決しなければなりません!

>>:  インテリジェントな会話型ロボットは顧客サービス分野で成熟を続けている

ブログ    
ブログ    

推薦する

...

Javaソートアルゴリズムの概要(IV):シェルソート

シェルソート(縮小増分法)は挿入型ソートに属し、順序付けられていないシーケンス全体をいくつかの小さな...

烏鎮サミットから10年:呉永明が初めてアリババの新たな変化について言及

ノア著制作:51CTO テクノロジースタック(WeChat ID:blog) 「夜、烏鎮の橋のそばの...

GoogleはOpenAIの競合企業Anthropicに最大20億ドルを投資することに同意したと報じられている

事情に詳しい関係者によると、10月28日、Googleはこれまでの投資に加え、OpenAIの競合企業...

スマートパッケージング:製造業の最新トレンド

[[352971]]画像ソース: https://pixabay.com/images/id-151...

2020 年にチャットボットはどこに向かうのでしょうか?

チャットボットはかつて大々的に宣伝された期待に応えようとしており、Intercom が委託した新しい...

ホワイトペーパー「マシンビジョンセキュリティカメラの画質評価手法に関する調査レポート」を公開

近年、マシンビジョンの成熟度が増すにつれ、マシンビジョン評価やイメージング能力評価が徐々に導入されて...

2020年のビジネスにおけるAIトレンドトップ10 人工知能技術は驚異的な速度で成長している

人工知能は 2010 年代の技術であり、時が経つにつれて、ますます多くの AI 技術が登場しています...

GitHub で最も人気のあるオープンソース機械学習プロジェクト 28 件: TensorFlow がトップ

機械学習は現在、業界で徐々にホットな話題になりつつあります。20年以上の開発を経て、機械学習は現在、...

...

...

ベイジアンパーソナライズランキングアルゴリズムを1つの記事で理解する

[[260485]] [51CTO.com からのオリジナル記事] 哲学にさまざまな流派があるように...

形式言語を認識する能力が不十分で、不完全なトランスフォーマーは自己注意の理論的欠陥を克服する必要がある

トランスフォーマー モデルは多くのタスクで非常に効果的ですが、一見単純な形式言語ではうまく機能しませ...

なぜ R&D 管理はコスト削減と効率向上のための永遠の特効薬と考えられているのでしょうか?

過去2年間で、インターネット業界の人口ボーナスはピークに達し、成長率は鈍化したというのが業界の全会一...

自動運転のためのマルチモーダルセンサーフュージョンの簡単な分析

マルチモーダル融合は、知覚ベースの自動運転システムにおける基本的なタスクであり、最近多くの研究者の関...