AIの限界を理解することがその可能性を実現する鍵となる

AIの限界を理解することがその可能性を実現する鍵となる

人工知能 (AI) は、デジタル顧客サービス アシスタント、自動運転車、無人倉庫のロボットなど、多くの業界のワークフローを変えています。 AIは文章を書いたり、絵を描いたり、音楽を作曲したりすることもできます。私たちは毎日、それについての賞賛を目にしています(私たちのサイトでもそうです)。ほとんどの人がこの考えに同意しており、ビジネスの現場でのこの考えの応用は人生を変えるほどのものです。もちろん、人工知能にも欠点はあります。

AI 愛好家 (または推測家) が主張するかもしれないことに反して、AI は企業のあらゆる問題に対する万能薬ではありません。客観的に言えば、AI とそのサブフィールドである機械学習 (ML) とディープラーニング (DL) の可能性を最大限に活用するための鍵は、その限界を理解することです。 AI が機能している場所と機能していない場所を認識することは、多くのビジネス リーダーがまだ習得していないスキルです。

今日のAIは弱い

これまで、AI アプリケーションは、特別に開発されたタスクのみを実行できました。言い換えれば、今日私たちが知っている AI は弱いのです。すべての質問に答えることはできませんし、柔軟に動くこともできませんし、もちろん自分で考えたり理解したりすることも(まだ)できません。したがって、AI の機能に関する約束は鵜呑みにしないでください。人工知能は単なるツールです。

人工知能に関する重要な質問

AI がビジネス プロセスを改善できる部分と改善できない部分を見極めるには、法的および倫理的考慮事項、偏見、透明性を考慮することが重要です。特定の AI アプリケーションに関する重要な質問をすることは、プロジェクトの成功とリスクの回避に不可欠です。

法的な観点から、判断ミス(例えば、自動運転車が歩行者をはねた場合)に対して誰が責任を負うべきかを説明する必要があります。認知ベースのテクノロジーを使用する際には偏見が存在することも認識する必要があります。 AI は入力されたデータから学習しますが、そのデータに疑問を呈する方法はありません。つまり、データセットが一方向に偏りやすく、AI が偏りを「学習」できるようになります。

これは、採用における差別や医療行政における偏見につながる可能性があります。 AI を導入する企業は、信頼と透明性の間の微妙なバランスを保つことにも気付くでしょう。高度な AI の目的は、時間の経過とともにより独立した決定を下すことですが、AI プログラムがどのように決定を下したかが不明な「ブラック ボックス」シナリオに遭遇する可能性が高いです。

AIに最適なビジネスプロセス

AI がハンマーだとすると、すべてのビジネス プロセスが釘であるとは限りません。 AI を特定のビジネス プロセスに適用できるかどうかを判断する際の重要な区別は、複雑さです。企業は、特定のアプリケーションに必要な認知介入のレベルに基づいて、AI ベースのツールの有効性を測定する必要があります。

人工知能は、複雑な問題を解決し、私たちが知っている人間の知能のいくつかの側面を再現するように設計されています。しかし、独自の意思決定基準を推論することに関しては、AI には欠陥があります。人工知能は、単純な「if-then」ルールに基づいて意思決定を行うときに最も効果的であると考えられています。

人工知能には大げさな宣伝は必要ありません。企業が AI ベースのテクノロジーの可能性を活用するには、まずこのテクノロジーの限界を理解する必要があります。確かに、ワークフローの合理化と自動化には役立ちますが、万能薬ではありません。企業がプロセスの自動化に AI の使用を検討している場合、まず、どのような情報が必要で、どのシステムから取得する必要があるかを検討する必要があります。これにより、AI ツールを使用するか、人間によるガイダンスを使用するかを決定するのに役立ちます。これを理解することで、AI はワークフローの合理化と自動化に非常に役立つツールになります。

<<:  なぜ人工知能は高度な数学を解くことができるのでしょうか?

>>:  150億のパラメータを持つ、史上最大のビジュアルモデル「V-MoE」の全コードをGoogleがオープンソース化

ブログ    

推薦する

テンセントの無人運転車が初登場!将来的には運転席がペンギンに置き換わる予定!プレート分析

人工知能と新技術の研究開発に関して、新たなブレークスルーがもう一つありました。 テンセントの無人運転...

蘭州テクノロジーの周明氏:大きなモデルは必ずしも大きいほど良いというわけではありません。100億規模のモデルでも十分かもしれません。

この記事は、WOT2023カンファレンスでの蘭州科技の創設者兼CEOである周明氏の基調講演からまとめ...

5Gについて知っておくべきことは何ですか?

1G の時代では、電話をかけたり受けたりすることしかできませんでした。 2G 時代は、電話をかけた...

3D モデルの「スキンを変更する」のはどれくらい簡単ですか?一言だけ

[[443015]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

...

トラックに「透明マント」を装着し、自動運転車を衝突させる。これは誰がより早く攻撃できるかを競う競争だ

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

...

人工知能は労働力不足の重要な解決策とみられる

セリディアンは、無限の労働力を動員する力に焦点を当てた年次経営者調査の結果を発表しました。調査では、...

2021 年のテクノロジートレンドはどこに向かうのでしょうか? IEEEが答えを教えます

[[357414]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

国内AI企業500社のビッグデータ分析:業界レイアウトと資金調達・投資動向

[[204973]]序文:今月、テンセント研究所とIT Juziは共同で「2017年中米人工知能ベン...

...

Amazon クラウド テクノロジーにより、Yidiantianxia は AIGC の波の中で新しいマーケティング パラダイムを構築できるようになりました。

生成的 人工知能 それがもたらす熱狂は継続し、すべての人の思考を刺激し続けます。今日の「百モデル戦争...

画像からの「テキスト生成」の難しさを克服し、同レベルの拡散モデルを粉砕せよ! TextDiffuser アーキテクチャの 2 世代の詳細な分析

近年、テキスト生成画像、特に詳細レベルでリアルな効果を示す拡散ベースの画像生成モデルの分野で大きな進...