ICLR 2022: AI が「目に見えないもの」を認識する方法

ICLR 2022: AI が「目に見えないもの」を認識する方法

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

今回、領域外物体検出の分野で新しいモデルVOSが発表されました。協力チームはウィスコンシン大学マディソン校で、論文はICLR 2022に掲載されています。

このモデルは、ターゲット検出と画像分類の両方で最高のパフォーマンスを達成し、FPR95 インデックスは以前の最高結果よりも 7.87% 低くなっています。

ディープネットワークにとって、未知の状況に対処することは常に難しい問題であったことを知っておくことは重要です。

たとえば、自動運転では、既知の物体(車、一時停止標識など)を認識する検出モデルが、馬をシマウマと間違えて、領域外(OOD)物体について高い信頼度の予測を行うことがよくあります。

たとえば、下の写真のヘラジカは、Faster-RCNN モデルによって 89% の信頼度で歩行者として識別されました。

したがって、ドメイン外オブジェクトの検出は、間違いなく AI セキュリティにおける非常に重要なトピックとなっています。

このモデルがドメイン外のオブジェクトについてどのように判断するかを見てみましょう。

VOSがドメイン外オブジェクトを検出する方法

VOS を理解する前に、ドメイン外オブジェクトの検出が難しい理由について説明する必要があります。

実際、それは理解しやすいことです。結局のところ、ニューラル ネットワークはトレーニングとテスト中にデータを学習するだけで、これまで見たことのないものに遭遇したときには当然それを認識することはないのです。

この問題を解決するには、ネットワークに「未知の」ものを認識させる方法を見つける必要があります。これについてどうすればいいでしょうか?

VOS が考え出した解決策は、モデルが学習するためのドメイン外のオブジェクトをシミュレートすることです。

たとえば、下の図の検出状況では、3 つの灰色の点がターゲットです。領域外のオブジェクトがシミュレートされていない場合(左) 、モデルは広い領域内でのみターゲットを囲むことができます。

シミュレートされたドメイン外オブジェクト(右)を使用してトレーニングした後、モデルはターゲットをコンパクトかつ正確にロックし、より合理的な決定境界を形成できます。

ターゲットがより正確にロックされると、この範囲外の他のオブジェクトはドメイン外オブジェクトとして判断できます。

この考えに基づいて、VOS チームは次のフレームワークを構築しました。

Faster-RCNN ネットワークに基づいて、シミュレートされたドメイン外オブジェクトのデータの一部が分類ヘッドに追加され、トレーニング セットのデータと組み合わせられ、標準化された不確実性損失関数が共同で構築されます。

これらのシミュレートされたドメイン外オブジェクトのデータはどこから来るのでしょうか?構造図を見ると、これらの点はすべて、可能性の低い領域であるターゲット領域(青い点、黄色の四角い点、緑の三角の点) の周囲からのものであることがわかります。

最後に、信頼度の計算に基づいて、青はターゲット検出データを表し、緑はドメイン外のオブジェクトを表します。

このようにして、画像内の車とヘラジカを識別できます。

他の多くの領域外オブジェクト検出方法と比較すると、VOS の利点がわかります。

各指標において、下向き矢印はデータが小さいほど良いことを意味し、逆に下向き矢印はデータが大きいほど良いことを意味します。

その中で最も有名なのは FPR95 で、OOD サンプルの分類精度が 95% の場合に OOD サンプルが ID サンプルに誤分類される確率を表します。

この結果は、これまでの最高結果から 7.87% 低下したものです。

他の既存の方法と比較しても、VOS には利点があります。

一般的な学習フレームワークとして、オブジェクト検出と画像分類の両方のタスクに適用できます。これまでの方法は主に画像分類によって行われていました。

このモデルは現在、GitHub でオープンソース化されています。

著者について

このモデルは主にDu Xuefeng、Cai Muらによって提案されました。

Du Xuefeng 氏は西安交通大学で学士号を取得し、現在はウィスコンシン大学マディソン校でコンピューターサイエンスの博士号取得を目指しています。

主な研究方向は、ドメイン外オブジェクトの検出、敵対的堅牢性、ノイズラベル学習などを含む信頼できる機械学習です。

蔡穆氏も西安交通大学を卒業し、学士号を取得しており、現在はウィスコンシン大学マディソン校でコンピューターサイエンスの博士課程2年目に在籍しています。

彼の研究の関心は、ディープラーニング、コンピュータービジョン、特に 3D シーン理解(ポイントクラウド検出)と自己教師あり学習に焦点を当てています。

この論文の責任著者は、現在ウィスコンシン大学マディソン校のコンピューターサイエンスの助教授であり、以前はFacebook AIの研究員であったSharon Yixuan Li氏です。

<<:  ICLRは深層生成モデルに関する大きな議論を開催し、ウェリングとAAAIの百万ドル賞受賞者が来場する。

>>:  機械学習の錬金術の理論的根拠はどれほど強固なのでしょうか?

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

...

「自然言語処理」とは何ですか? 具体的に何を「処理」するのですか?

[51CTO.com からのオリジナル記事] 「自然言語処理」(NLP) は、近年テクノロジー コ...

データセット検索アーティファクト! 100 個の大規模な機械学習データセットがここに収集されています

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

PyTorch 1.12 がリリース、Apple M1 チップ GPU アクセラレーションを正式にサポート、多くのバグを修正

​PyTorch 1.12 が正式にリリースされました。まだアップデートしていない方は今すぐアップ...

推奨される 5 つのオープンソースオンライン機械学習環境

[51CTO.com クイック翻訳] 機械学習は、機械が直接プログラムされることなく学習できるように...

BBAug: PyTorch 用のオブジェクト検出境界ボックスデータ拡張パッケージ

多くのニューラル ネットワーク モデルと同様に、オブジェクト検出モデルは大量のデータでトレーニングす...

人工知能の発展を推進する4つの技術

[[419350]] 「人工知能」という用語は 1956 年に初めて登場しました。人工知能とは、機械...

「中国版GPT-3」が登場。算術演算が可能で、紅楼夢を書き続けることができる。64枚のV100画像で3週間トレーニングされた。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

Java プログラミング スキル - データ構造とアルゴリズム「ヒープ ソート」

[[389058]]ヒープソートの基本ヒープソートは、ヒープデータ構造を使用して設計されたソートア...

Google、かわいい動物動画生成に優れたAI動画ジェネレータ「Lumiere」をリリース

海外メディアの報道によると、1月26日、GoogleはLumiereと呼ばれる人工知能ビデオジェネレ...

新しいインフラの推進により、人工知能の応用は新たな段階に入る

レポート概要新しいインフラストラクチャにより人工知能アプリケーションの実装が加速COVID-19パン...

人工知能が企業コミュニケーションに及ぼす10の影響

職場にソフトウェア ロボットや人工知能 (AI) が導入されると考えると、一部の労働者は不安を感じる...

銀行業務における人工知能と機械学習の利用拡大

[[432637]]銀行ガバナンスリーダーシップネットワーク(BGLN)は最近、銀行が人工知能(AI...

百度の商用グレードの無人バス「アポロ」が一般公開され、試乗が可能に

百度は第1回デジタルチャイナサミットで、中国の商用グレードの無人バス「アポロ」の試乗を一般公開すると...