データセンターにおけるAI技術の応用

データセンターにおけるAI技術の応用

AI技術はここ数年で進歩しており、データセンターを含む多くの業界で導入されています。たとえば、GoogleはAIを使用してデータセンターフレームワークの効率を改善し、自動運転AI技術をデータセンターに統合しています。今日は、データセンターにおける AI 技術の技術的な応用と機能について見てみましょう。

省エネデータセンター

データセンターは大量のエネルギーを消費することが知られていますが、人工知能 (AI) の使用により、この点での効率化が図られています。エネルギー効率を向上させることで、データセンターの環境への影響も改善されます。 AI システムは、Google のデータセンターがどのように動作しているかをリアルタイムで分析するために使用されています。これらの人工知能ニューラル ネットワークは、AI アルゴリズムを使用してシステムを分析し、問題を診断し、問題が解決したらすぐに変更を加えます。 AI システムは即座に機能するだけでなく、問題から自己学習できるため、次回よりも早く問題を解決したり、再発を防いだりすることができます。これをディープラーニングといいます。

人工知能: ディープラーニング

ディープラーニングとは、AI システムが遭遇する状況から実際にどのように学習するかを説明する用語です。ディープラーニングは経験から学習することで、AI システムが将来の問題を解決するのに役立ちます。 Uranus AI 人工知能は人間の脳の働きを模倣し、データ内のパターンを識別することで学習します。これにより、AI システムはデータセンターを運営するための最適な方法を提案し、決定できるようになります。

専門家は現在、データセンターにおける AI についてどう考えているのでしょうか?

データセンター内の AI システムはある程度役立っていますが、多くの業界幹部は依然として AI テクノロジーはまだ期待どおりに機能していないと考えています。 Digital Realty の Erich Sanchack 氏: 「データ センターに AI を実装することで、現在の DCIM システムとその限界をはるかに超える成果が得られます。AI を使用すると、電力と設備に関するすべての決定とプロセスが完全に最適化されるだけでなく、リソース プランニングや、動的帯域幅やサーバー割り当てなどの高度な機能も完全に自動化された実際の環境を作成できます。」

現在、データセンターでは AI はどのように機能していますか?

現在、データセンター内で人工知能を使用する主な目的の 1 つは、エネルギー効率の向上です。Google は人工知能を使用することで、エネルギー使用量を 40% 削減できました。Google のような大企業にとって、40% のコスト削減は数千万ドルの節約になります。データ センターで AI を使用するもう 1 つの目的は、運用の最適化です。ディープラーニング ソフトウェアのおかげで、AI は予測分析を使用してデータ センターのワークロードを分散できます。 AI が使用される最も重要な方法の 1 つは、データ センターのセキュリティ目的です。データ センターは常にセキュリティの脅威に備える必要があります。手動メンテナンスとは異なり、AI システムは 24 時間 365 日、あらゆる脅威を監視して対応することができます。 これらの脅威を監視するには多くの時間と人的リソースが必要であり、人工知能システムはデータセンターがセキュリティ問題を処理する方法を変えています。 現在、多くのデータセンターやコロケーション プロバイダーは、DCIM システムを使用して、コンピューター ルームのさまざまな側面を監視しています。 DCIM ソリューションは、セキュリティ、温度と湿度、冷却、火災の危険、換気の一部を管理できますが、DCIM でもこれらすべてを管理するのは困難です。最善の解決策は、AI と DCIM を組み合わせたシステムを導入することです。China Fortune Land Development の Uranus AI 人工知能は、完全なソリューションを提供できます。

結論

AI データ センターには、データ管理とデータ ストレージの全体的な改善など、多くの利点があります。全体として、AI 管理データセンターは、データセンター業界にとって前向きな一歩です。人工知能により、人件費を節約できるだけでなく、データセンターのエネルギー効率も向上し、世界のグリーン経済に対する責任と義務を負うようになります。

<<:  ハイパーオートメーション – AIの新時代における自動化

>>:  人工知能、垂直農法、ブロックチェーン、ロボットは、未来の農業の急速な発展を推進する4つの主要技術である。

ブログ    

推薦する

無人トラックで商品を配達しますか?アマゾンが自動運転車の特許を申請

[51CTO.com からのオリジナル記事] 現在、ドローンは間違いなくアマゾンの物流ネットワークで...

ロビン・リーは、最後の自慢を達成した後、今日の百度世界大会でさらに 3 つの目標を設定しました。

[[248365]] 7月4日に開催された百度AI開発者会議で、ロビン・リー氏は「以前自慢していた...

EUはAI規制のルールを強化する計画で、最も厳しい法案を発表

欧州委員会は4月21日にAIに関する法案草案を正式に発表した。 81ページに及ぶ草案では、EUは社会...

AI 駆動型スマートビルは将来のトレンドになるでしょうか?

人工知能 (AI) は、建物の管理と制御の方法に革命をもたらし、これまで以上に効率的でコスト効率の高...

人工知能の時代において、「次世代」の教育はどこから始めるべきでしょうか?

[[334948]]自動運転車、音声アシスタント、その他の人工知能技術は、ほとんどの人にとって革命...

新型コロナウイルスが猛威を振るう中、AI技術は流れを変えることができるのか?

最近、謎の新型コロナウイルスが驚くべき速さで猛威を振るっています。先週木曜日、世界保健機関(WHO)...

SAPはイノベーションで顧客の成功を支援し、AI時代のデータ主導のビジネス変革の未来を形作ります

SAP は、AI 時代において顧客がデータの潜在能力を最大限に活用し、より深い洞察、より速い成長、よ...

AIに人間のように計画を立てることを教えるにはどうすればよいでしょうか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

DeepMindらが優秀論文賞を受賞、IBMスーパーコンピュータDeep Blueが古典に、IJCAI2023の賞が発表

国際人工知能合同会議(IJCAI)は、AI分野におけるトップクラスの学術会議の一つです。第1回会議は...

スマートドライビングに才能が注ぎ込む:合理性と狂気が共存

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

GoogleのReCaptchaシステムが破られ、機械音声認証の精度は85%に達した

米国のメリーランド大学の研究者4人が、GoogleのキャプチャシステムReCaptchaを解読できる...

Transformer の再考: 反転がより効果的になり、現実世界の予測のための新しい SOTA が出現

トランスフォーマーは、ペアワイズ依存関係を記述し、シーケンス内のマルチレベル表現を抽出できるため、時...

百度が銀川市で初のインテリジェントネットワーク試験ライセンスを獲得し、自動運転車が銀川市の公道でデビューした。

2020年銀川国際スマートシティ博覧会において、銀川市政府は百度に、同市初のインテリジェントコネク...

2023 年までにデータセンターで注目される AI と ML の 10 大アプリケーション

人工知能 (AI) と機械学習 (ML) は、データセンター分野の重要なテクノロジーとなっています。...

精密人工知能:原子核物理学と素粒子物理学における新たな力

素粒子物理学の標準モデルは、既知のすべての素粒子と、宇宙を支配する 4 つの基本的な力のうち 3 つ...