生成型人工知能とは何かについて話しましょう

生成型人工知能とは何かについて話しましょう

ジェネレーティブ AI は、これまでビジネス パーソンに依存していたモデルをアルゴリズム担当者が生成できるようにし、ビジネス パーソンの思考や経験によって生じるエラーのない創造的な結果を提供する革新的なテクノロジーです。

この新しい AI 技術は、入力の元のモデルを決定し、トレーニング データの特性を示す実際の製品を生成します。 MIT Technology Review は、生成 AI が人工知能の分野における有望な方向性であると指摘しています。

生成 AI は、すべてのデータ セットからの自律学習を通じて、より高品質な結果を提供します。特定のプロジェクトに関連する課題を軽減し、バイアスを回避するために ML (機械学習) アルゴリズムをトレーニングし、ロボットが抽象的な概念を理解できるようにします。

優良外資コンサルティング会社であるガートナーは、2022年の主要なトレンドのリストの中でジェネレーティブAIに言及し、企業がこの革新的なテクノロジーを2つの方法で活用できることを強調しました。

  • ビジネス部門と連携して現在のイノベーション ワークフローを強化し、人間が創造的なタスクをより効率的に実行できるように自動化を開発します。たとえば、ゲームデザイナーは生成 AI を使用して、「こんな感じ」や「ちょっとこんな感じじゃない」など、好きなところと嫌いなところを強調したダンジョンを作成できます。
  • ビジネス プロセスの重要な部分として機能する: 生成 AI は、人間の関与をほとんどまたはまったく必要とせずに、無数の創造的な作品を生み出すことができます。コンテキストを設定するだけで、結果は独立して生成されます。

1. 生成AIの利点

  • プライバシーを保護: 生成 AI は、使用中に ID を明らかにするユーザーにプライバシーとセキュリティを提供する仮想 ID を生成します。
  • ロボット制御: 生成 AI は ML モデルを強化し、局所性を減らし、現実世界を模倣する際の抽象化を高めます。
  • ヘルスケア: このテクノロジーにより、可能性のある病状を簡単かつ便利に検出し、効果的な治療法を開発できます。たとえば、生成的敵対的ネットワーク (GAN) は、X 線画像の複数の角度を計算して、腫瘍が拡大する可能性を示すことができます。

2. 生成AIの課題

  • セキュリティ: 生成 AI を使用して詐欺を働く犯罪者も確認されています。
  • 高度な推定機能: 生成 AI アルゴリズムでは、モデルをトレーニングするために大量のトレーニング データが必要ですが、その作成物はまったく新しいものではありません。代わりに、モデルは単純に可能な限り最適な方法で組み合わせられます。
  • 予測できない結果: 一部の生成 AI モデルでは、動作の処理が簡単ですが、間違った結果や予期しない結果が生成される場合があります。
  • データ セキュリティ: テクノロジーはデータに依存しているため、ヘルスケアや防衛などの業界では、生成 AI を活用する際にプライバシーの問題に直面する可能性があります。

3. 生成 AI は単なる教師ありトレーニングですか?

Generative AI は半教師ありトレーニング フレームワークです。この学習方法では、教師ありトレーニングの場合は手動でラベル付けされたトレーニング情報を使用し、教師なしトレーニング方法の場合はラベル付けされていないデータを使用します。ラベルなしデータは、データの品質を向上させることで、ラベル付きトレーニングよりも多くの予測ができるモデルを開発するために使用されます。

GAN は、教師あり学習のための生成 AI 半教師ありフレームワークです。GAN の主な利点は次のとおりです。

  • 過剰適合: 生成 AI モデルにはパラメータが少ないため、過剰適合がより困難になる可能性があります。さらに、生成モデルはトレーニングプロセスのために大量のデータを必要とするため、摂動に対して非常に堅牢になります。
  • 主観的バイアス: 人間の主観は、生成 AI モデリングで使用される教師あり学習方法ほど明白ではありません。学習は、偽の相関関係を排除できるデータ プロパティに基づいて行われます。
  • モデルバイアス: 生成モデルによって生成された結果は、トレーニング データとは異なります。したがって、形状と質感の問題はなくなります。

4. 生成型人工知能の応用

(1)AI生成NFT

2021年のNFTの売上高は250億ドルに達し、この業界は現在、暗号通貨の世界で最も収益性の高い市場となっています。特にアートNFTは大きな影響を与えています。

最も人気のあるアート NFT は漫画やミームですが、AI と人間の想像力の力を活用した新しい NFT のトレンドが生まれています。これらの NFT は AI 生成アートと呼ばれ、GAN を使用して機械ベースの芸術的な画像を生成します。

Art AI は、AI によって生成された絵画の表示例です。同社は、テキストをアート製品に変換し、クリエイターがNFTでアートを販売できるようにするツールをリリースしました。一方、Metascapes は、学習した 2 つのモデルを使用して画像を組み合わせて新しい写真を生成し、モデルがトレーニングされるにつれて、出力は毎回向上します。これらの作品はオンラインで販売される予定です。

(2)アイデンティティセキュリティ

生成 AI により、ユーザー アバターのプライバシーを維持できます。これにより、公の場で公正な活動が行われ、公正な結果が提示されるようになります。

(3)画像処理

人工知能を使用すると、低解像度の画像を処理し、より正確で鮮明で詳細な画像を作成できます。たとえば、Google はブログ記事を公開し、低解像度の画像を高解像度の画像に変換する 2 つのモデルを作成したことを世界に知らせました。

たとえば、女性の写真が 64 x 64 の入力から 1024 x 1024 の出力に変換されるなどです。このプロセスは、古い画像やムービーを復元し、4K などの品質にアップスケールするのに役立ちます。白黒ムービーをカラーに変換することも可能です。

(4)医療

生成 AI は病状をより正確に特定し、患者が初期段階であっても効果的な治療を受けられるようにします。

(5)オーディオ合成

生成 AI を使用すると、ユーザーの音声に基づいてまったく新しい音色を合成できます。生成されたサウンドは、企業や個人向けのビデオのナレーション、音声クリップ、ナレーションの開発に役立ちます。

(6)デザイン

現在、多くの企業が生成 AI を使用して、より高度なデザインを作成しています。たとえば、ワシントン D.C. に拠点を置くエンジニアリング会社 Jacobs は、ジェネレーティブ デザイン アルゴリズムを使用して、NASA の新しい宇宙服用の生命維持バックパックを設計しました。

(7)顧客セグメンテーション

人工知能により、ユーザーはプロモーション キャンペーンの対象グループを識別して区別することができます。過去の記録から学び、ターゲット グループが広告やマーケティング キャンペーンにどのように反応するかを予測します。

生成 AI は、データを活用して顧客関係を構築し、マーケティング チームがアップセルやクロスセル戦略を強化できるようにすることもできます。

(8)感情分析

ML では、テキスト、画像、音声評価を使用してユーザーの感情を把握します。たとえば、AI アルゴリズムは Web アクティビティやユーザー データから学習して、企業やその製品やサービスに関する顧客の感情を解釈できます。

(9)不正行為の検出

一部の企業ではすでに AI を使用した自動不正検出を導入しています。これらの実践は、悪意のある疑わしい行動を迅速かつ正確に特定するのに役立ちます。人工知能は、事前に設定されたアルゴリズムとルールを通じて違法取引を検出し、盗難識別検出を容易にします。

(10)傾向評価

機械学習と AI テクノロジーはトレンドの予測に役立ちます。これらの技術は、従来の計算分析を超えたトレンドに関する貴重な洞察を提供するのに役立ちます。

(11)ソフトウェア開発

生成 AI は、手動コーディングを自動化することでソフトウェア開発の世界にも影響を与えています。 IT プロフェッショナルは、ソフトウェアを完全にコーディングするのではなく、求めている AI モデルを説明することで、ソリューションを迅速に開発できる柔軟性を獲得しました。

たとえば、モデルベースのツール GENIO を使用すると、手動でコーディングする場合に比べて開発者の生産性が数倍向上します。このツールは、開発者や非プログラマーがニーズやビジネス プロセスに特化したアプリケーションを開発し、IT 部門への依存を減らすのに役立ちます。

5. 生成AIの未来は希望に満ちている

生成 AI は現在、画像制作、フィルム修復、3D 環境作成のツールになりつつありますが、このテクノロジーは近い将来、他のいくつかの業界分野にも大きな影響を及ぼすでしょう。モデルに、組立ラインの労働力を置き換えて創造的なタスクを引き受ける以上の機能を与えることで、さまざまな分野で生成 AI の幅広いユースケースと使用が見られるようになるでしょう。

<<:  人工知能が水力発電の持続可能な開発にどのように役立つか

>>:  研究者は人工知能を使って、膨大なデータに隠された異常をリアルタイムで発見する

ブログ    
ブログ    
ブログ    

推薦する

GPT-4の予測の新たな波は、大きすぎず密度も高くないテキストのみのモデルに向けて到来している。

2020年5月、GPT-3はGPT-2の1年後に正式にリリースされました。GPT-2も、オリジナル...

ロボットコーチ+模擬運転、焦作全通自動車学校が運転訓練の先駆者

人工知能の発展に伴い、ロボット教育は全国の運転訓練業界で徐々に登場してきました。新しい時代の要求に適...

人工知能の歴史 - チューリングテストからビッグデータまで

[[194770]]私はずっと、人工知能がどのように提案されたのか、その背後にはどのような物語がある...

ディープラーニングの将来の発展に向けた3つの学習パラダイム:ハイブリッド学習、コンポーネント学習、簡易学習

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

感情コンピューティングは人間とコンピュータの相互作用の中核となるのでしょうか?感情分析におけるディープラーニングの応用について

人間とコンピュータの相互作用における感情コンピューティングの役割感情コンピューティングについて話す前...

今後5年間で人気が高まり、就職時の給与も高くなる3つの専攻

大学で何を専攻するかは、慎重に考える必要があります。結局のところ、大学の専攻の選択は私たちの将来の発...

負けても落ち込まないで! Google、ロボット工学プロジェクトを再開

[[260578]]海外メディアの報道によると、グーグルは以前の取り組みが失敗した後、ロボット工学プ...

[文字列処理アルゴリズム] 入力文字列の各単語の順序を逆にするアルゴリズム設計とCコード実装

1. 要件の説明文字列を入力し、文字列内の単語を逆順に組み立てて出力するプログラムを作成します。たと...

顔認識は「スマート交通」に役立ち、3つの側面でその価値を実証する

近年、都市化の急速な発展と都市人口の継続的な増加により、都市交通の重要性がますます高まっています。わ...

シンボリック人工知能、シンボリックAIの利点と限界について学びます

現在、AI は主に人工ニューラル ネットワークとディープラーニングに関するものです。しかし、必ずしも...

デアデビルが来た!バットセンスAIは、スマートフォンが音を聞いて3D画像を生成できるようにする

英国の科学者たちは、スマートフォンやノートパソコンなどの日常的な物に、デアデビルと同じくらい強力なコ...

多くの人がまだブロックチェーンについて漠然とした理解しか持っていない中、これらのブロックチェーンの応用シナリオはすでに実装されている。

1.ブロックチェーン + IP著作権最近、フェニックスオンライン書店は「フェニックスエッグ」と呼ば...

...

防疫、試験監督、願書記入、大学入試にAIがどう対応するかをご覧ください!

今年の大学入試には最初から最後までAIが登場した。 2020年の大学入試は史上最難関と言っても過言で...

ボストンダイナミクスのスポットが工場に入り、作業を開始しました!現代自動車はそれを夜間警備に配備し、工場の安全管理官に変身させる

ボストン・ダイナミクスのロボットは見た目はかっこいいのですが、使い道がないので、好評は得られても人気...