DeepMindは、あらゆる武器を持つロボットを簡単に倒すことができる視覚ベースの強化学習モデルを提案している。

DeepMindは、あらゆる武器を持つロボットを簡単に倒すことができる視覚ベースの強化学習モデルを提案している。

人間は模倣が得意です。私たちや他の動物は、行動を観察し、それが環境の状態に与える影響を理解し、同じような結果を得るために私たちの体がどのような行動をとれるかを考え出すことで模倣します。

模倣学習はロボットの学習タスクにとって強力なツールです。しかし、このような環境認識タスクでは、強化学習を使用して報酬関数を指定することは困難です。

DeepMind の最新の論文は、主に、動作状態に依存せずに、三人称の視覚のみから操作の軌跡を模倣する可能性について探究しています。チームは、視覚的に示した複雑な動作を模倣するロボットマニピュレーターからインスピレーションを得ました。

DeepMind が提案する方法は、主に 2 つの段階に分かれています。

1. マニピュレータに依存しない表現(MIR)を提案する。つまり、ロボット、人間の手、その他の機器のいずれであっても、この表現が後続のタスクの学習に使用できることを保証する。

2. 強化学習を使用して行動戦略を学習する

演算子に依存しない表現

ドメイン適応性問題は、ロボットシミュレーションの現実において最も重要な問題であり、つまり、視覚シミュレーションと現実の違いを解決することです。

1. 様々なタイプのオペレータと様々なシミュレーション環境をランダムに使用して現実世界をシミュレートする

2. 手術アームの追加および除去後の観察

3. Temporally-Smooth Contrastive Networks (TSCN) は、TCN と比較して、ソフトマックスクロスエントロピー目的関数に分布係数 p を追加し、特にクロスドメインの場合に学習プロセスをよりスムーズにします。

強化学習の使用

MIR 表現空間の要件は実行可能であり、強化学習に使用して特定のアクションとして表現できます。

1 つの解決策は、目標条件付けを使用してポリシーをトレーニングすることです。入力は現在の状態 o と目標状態 g になります。この記事では、現在の状態 o とクロスドメインのターゲット状態 o' を入力して、目標に到達するためのアクションの数を最小限に抑える拡張アプローチであるクロスドメイン目標条件付きポリシーを提案します。

データと実験

研究チームは、8 つの環境とシナリオ (標準シミュレーション、目に見えないアーム、ランダム アーム、ランダム フィールド、Jaco ハンド、実際のロボット、杖、人間の手) で実験を行い、未知のマニピュレータによる制約のない操作軌跡のシミュレーションのパフォーマンスを評価しました。

また、単純な目標条件付きポリシー (GCP) や時間距離などのいくつかのベースライン手法も使用しました。

MIR は、テストされたすべての領域で最高のパフォーマンスを実現します。重ね合わせの成功率に関しては大幅に優れたパフォーマンスを発揮し、シミュレートされた Jaco Hand と Invisible Arm を 100% のスコアでうまく模倣します。

この研究は、視覚模倣における視覚模倣表現の重要性を実証し、視覚模倣における操作に依存しない表現の適用が成功することを検証します。

将来の工場のロボットはより強力な学習能力を備え、特定のツールや特定のタスクに限定されなくなります。

<<:  スマート物流が一般的なトレンドであり、ロボット、ドローン、5Gの価値が強調されている

>>:  AIガバナンスがリスクを軽減しながら利益を獲得する方法

ブログ    
ブログ    
ブログ    

推薦する

あらゆるシーンのあらゆるもの: リアルなオブジェクトの挿入 (さまざまな運転データの合成に役立ちます)

あらゆるシーンのあらゆるもの: フォトリアリスティックなビデオオブジェクト挿入論文リンク: http...

...

企業向けの優れたビジネス インテリジェンス ツール 10 選

規模に関係なく、企業はニーズに合わせてカスタマイズされたビジネス インテリジェンス ツールを使用して...

企業が機械学習で犯す5つの間違い

機械学習技術の発展により、企業内のさまざまな構造化コンテンツや非構造化コンテンツから、より多くの情報...

「ハードコア」AIが私たちの家庭に導入されるまでにはどれくらいの時間がかかるのでしょうか? 最先端技術には依然としてブレークスルーが必要

お腹が空いたら、キッチンロボットがミシュランレストランの基準に匹敵するステーキを調理します。運転した...

ディープラーニングと従来の機械学習のメリットとデメリット!

過去数年間、ディープラーニングは、従来の機械学習を凌駕し、ほとんどの AI 型の問題に対する頼りにな...

約 200 以上の自動運転データセットの包括的な調査!データクローズドループプロセス全体の概要

序文と個人的な理解自動運転技術は、最新のハードウェアとディープラーニング手法の進歩により急速に発展し...

...

ロボティック・プロセス・オートメーションは小売業界の運営と成長にどのように役立ちますか?

利益率が圧迫されている中、ロボティック・プロセス・オートメーション (RPA) を導入することでコス...

独自の顔ぼかしツールを構築する方法

OpenCVを使用して顔認識をカスタマイズする方法[[412851]]匿名化とは、データを匿名化する...

建設における人工知能の能力と限界

AI は、建設業界が大規模なインフラ プロジェクトを計画、実行、管理する方法に革命をもたらし、組織が...

清華大学が転移学習アルゴリズムライブラリをオープンソース化:PyTorch実装に基づき、既存のアルゴリズムの簡単な呼び出しをサポート

最近、清華大学ビッグデータ研究センターの機械学習研究部門は、効率的で簡潔な転移学習アルゴリズムライブ...

あなたはまだ顔認識精度指標に騙されていませんか?

導入ハードウェアの性能向上と顔データ量の増加に伴い、顔認識はますます成熟し、商業的な用途もますます増...

...