人工知能で電力網の問題を解決する

人工知能で電力網の問題を解決する

MIT-IBM Watson AI ラボの研究者たちは、電力網の問題のトラブルシューティングに人工知能を利用しています。彼らは、米国の電力網全体にわたる何十万ものセンサーから収集されたデータを分析できる機械学習モデルを開発した。

いわゆる同期位相器技術の一部であるこれらのセンサーは、電流と電圧に関する膨大な量のリアルタイムデータを集約し、電力網の健全性を監視し、停電につながる可能性のある異常を特定することができます。

同期フェーザー解析では、センサーによって生成されるデータ ストリームのサイズとリアルタイム性のため、大量のコンピューティング リソースが必要になります。研究者の論文で定義されているように、異常検出、つまり「大多数のデータインスタンスから大きく逸脱する異常なサンプルを識別するタスク」のためにデータを迅速に抽出することは困難な場合があります。

センサーによって収集されるデータはほとんどが非構造化であるため、ラベル付きデータなしで ML モデルをトレーニングできます。

「電力網の例では、統計を使用してデータを取得し、ドメイン知識を使用して検出ルールを定義しようとしました。たとえば、電圧が一定の割合で急上昇した場合、電力網のオペレーターは警告を受け取る必要があります。このようなルールベースのシステムは、統計データ分析を義務付けていても、多くの労力と専門知識を必要とします。現在、私たちはこのプロセスを自動化し、高度な機械学習技術を使用してデータからパターンを学習できることを証明しました。」

この ML モデルを開発するために、研究者はまず異常を低確率のイベントとして定義し、電力網データセットを確率分布として定義して確率密度を推定しました。これにより、異常に関連する低密度値または低確率イベントを検出できます。

このような複雑なデータの場合、確率分布は扱いにくいため、研究者らは正規化フローと呼ばれるディープラーニングモデルを使用して確率密度を推定しました。正規化されたフロー モデルは、センサーの動作と相互作用を学習できるグラフであるベイジアン ネットワークを使用してスケーリングされます。グラフ構造により、データ内のパターン認識が可能になり、より正確な異常検出が可能になります。

MIT News によると、「ベイジアン ネットワークは、複数の時系列データの結合確率を、パラメーター化、学習、評価が容易な、より単純な条件付き確率に分解します。」結果は、グラフの確率的単純化により、ML モデルがグラフを独立して学習できることを示しています。

研究者たちは、異常検出以外の他の方法を実装しながら、これらのモデルをどのようにして拡大してより大きなグラフで使用できるかに興味を持っています。この技術は適応性に優れているため、交通パターンや監視に関連するものなど、複雑なデータ収集と分析を必要とする他の分野にも応用できます。

「モデルが稼働すると、センサーデータの安定した流れから学習を続け、起こり得るデータ分布のドリフトに適応し、時間の経過とともに精度を維持する」とMITニュースの記事は述べている。


<<:  Transformerのトレーニング問題を解決するために、Microsoft Researchは1000層のTransformerを開発しました。

>>:  メタバースの開発にはどのような重要な技術が必要ですか?

ブログ    
ブログ    

推薦する

機械学習の実際の応用は何ですか?

簡単に言えば、機械学習とは、非常に複雑なアルゴリズムと技術に基づいて、人間の行動を無生物、機械、また...

ロボットとAIがサプライチェーンを自動化する方法

自動化技術は現在あらゆる業界に浸透しつつあり、これはサプライチェーンにおいて特に顕著です。実際、自動...

自動化がビジネスに具体的な価値をもたらす方法

[[404690]]長年にわたり、多くの企業がロボット、自動化、人工知能などのテクノロジーからより多...

6つのトラックと10のテクノロジー: インテリジェントボディと3D生成がAIを活性化し、空間コンピューティングがターミナル変革を切り開く

2000年前に生きていた古代人が1000年前に戻ったとしても、適応できるものは多くないかもしれません...

データ汚染を防ぐのは困難です。機械学習モデルに「悪いことを学習」させないでください

過去 10 年間、クラウド コンピューティングの普及により、多くの企業に高性能コンピューティングおよ...

AIに関する誤解

企業は意思決定を強化し、消費者体験を向上させるために、幅広いアプリケーションで人工知能を活用すること...

コレクション | データアナリストがよく使用する機械学習アルゴリズム 10 個!

機械学習の分野では、「世の中にただ飯はない」という格言があります。簡単に言えば、あらゆる問題に対して...

アルゴリズムの品質を評価するにはどうすればよいでしょうか?

序文アルゴリズムの品質を評価するには、そのアルゴリズムが問題を解決できるかどうかを確認することが重要...

第一回美団クラウド人工知能サミットが開幕、エコパートナーと協力して最もオープンなAIプラットフォームを構築

10月31日、中関村サイエンスパーク管理委員会の指導の下、美団クラウドが主催し、「AIの力で共存とW...

あなたは人工知能についてどれくらい知っていますか?普通の人として、私たちはもっと多くのことを知る能力を持っているのでしょうか?

それはとても神秘的で、本当にハイエンドで、急速に発展しています!それは私たちの周りにあり、あなたは気...

Google検索アルゴリズムの変更:暗号化されたウェブページの重み付けが向上

つまり、新しい Google 検索アルゴリズムでは、「HTTPS」(Hypertext Transf...

AI には明るい未来があります。これらの 5 つのことをうまく実行すれば、将来の市場で発言権を持つ可能性が高まります。

2021年の初め、AIの軌道は混乱していました。業界のスター企業から悪いニュースが続々と届き、上場...

人工知能を使って手作業を置き換え、コストを削減し、効率を高めることは、まさに賢いことだ

「大丈夫ですよ。」 15年間工場で働いてきた「古い」労働者として、今日は人工知能についての私の見解を...

人気の4D Radarオープンソースデータの概要

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...