統計ウェブサイト: https://mlcontests.com/ 著者はいくつかの重要な結論に達しました: プラットフォームタイプこの調査では、著者らは 16 のプラットフォームで合計 83 の競技を数えました。これらのコンテストの賞金総額は 270 万ドルを超え、最も賞金の高いコンテストは Driven data が主催する Facebook AI Image Similarity Challenge: Matching Track で、賞金は最大 20 万ドルです。 競技種別調査によると、2021 年に最も一般的な競争の種類はコンピューター ビジョンと自然言語処理です。これは、NLP コンテストが全体のコンテストのわずか 7.5% を占めていた 2020 年と比べて大きな変化です。 数多くの NLP コンテストの中でも、Zindi は AI4D (Artificial Intelligence for Development Africa) と共同で、アフリカの言語を英語または他の言語に翻訳したり、アフリカの言語で感情分析を実行したりするコンテストを最も多く開催してきました。 言語とフレームワークこの調査では、主流の機械学習フレームワークは依然として Python に基づいています。 Scikit-learn は非常に汎用的で、ほぼすべての分野で使用されています。 当然のことながら、最も人気のある 2 つの機械学習ライブラリは Tensorflow と Pytorch です。その中でも、ディープラーニングのコンテストではPytorchが最も人気があります。 2020 年と比較して、ディープラーニングのコンテストで PyTorch を使用する人の数は急増しており、PyTorch フレームワークは毎年急速に発展しています。 チャンピオンモデル教師あり学習古典的な機械学習の問題では、Catboost や LightGBM などの勾配ブースティング モデルが主流です。たとえば、屋内測位とナビゲーションに関する Kaggle コンテストでは、参加者はリアルタイムのセンサー データに基づいて屋内でのスマートフォンの位置を予測するアルゴリズムを設計する必要があります。チャンピオン ソリューションには、ニューラル ネットワーク、LightGBM、K 近傍法の 3 つのモデリング アプローチが検討されました。しかし、最終的なパイプラインでは、LightGBM と K-Nearest Neighbors でのみ最高スコアを達成しました。 コンピュータビジョン 2012 年に AlexNet が ImageNet コンテストで優勝して以来、CNN アルゴリズムは、特にコンピューター ビジョンにおける多くのディープラーニングの問題に使用されるアルゴリズムになりました。
最後に、RNN と CNN の組み合わせが可能になり、これはおそらくコンピューター ビジョンにおける最も高度なアプリケーションです。データが CNN に適しているが、時間的特徴が含まれている場合、ハイブリッド RNN と CNN 技術が好ましい戦略となる可能性があります。 他のアーキテクチャの中でも、EfficientNet はモデルの精度と効率の両方の向上に重点を置いている点で際立っています。 EfficientNet は、複合係数というシンプルだが効果的な手法を使用してモデルを増幅し、スケーリング戦略を使用して 7 つの異なる次元のモデルを作成します。その精度は、ほとんどの畳み込みニューラル ネットワークの SOTA レベルを超えています。 NLP2020 年と同様に、NLP 分野での大規模言語モデル (Transformer など) の採用は 2021 年に大幅に増加し、過去最高に達しました。著者は約 6 つの NLP ソリューションを発見しましたが、それらはすべてトランスフォーマーに基づいています。 優勝チーム著者らはデータセット内の 35 ゲームの勝者を追跡しました。そのうち、このコンテストでこれまで一度も賞を獲得したことがないのはわずか9人でした。 2020年と比較すると、多くの大会で優勝経験のある古参参加者が何度も優勝し、初めて優勝する人はわずかであり、割合に目立った変化はないことがわかります。 アドバンテージプログラム機械学習のコンテストで優勝した提案の中で、統合モデルは好まれる方法の 1 つになりました。アンサンブル法の中で最も一般的に使用されるアプローチは平均化です。これは、複数のモデルを構築し、それらの出力の平均を追加することでそれらを組み合わせ、より堅牢なパフォーマンスを実現します。 アンサンブル法の応用例Kaggle の「キャッサバの葉の病気の分類」コンテストでは、参加者はキャッサバの葉の画像を健康なもの、または 4 種類の病気に分類する必要がありました。チャンピオン ソリューションには、CropNet、EfficientNet B4、ResNext50、Vit の 4 つの異なるモデルが含まれており、平均化方式が使用されます。 |
>>: なぜディープラーニングは非パラメトリックなのでしょうか?
レオナルド・ダ・ヴィンチ、ルーベンス、アンディ・ウォーホルが描いた自分の肖像画をもらったらどんなだろ...
音声認識とは、機械またはプログラムが話し言葉の単語やフレーズを認識し、機械が読み取り可能な形式に変換...
暑い夏には、スーパーマーケットにちょっとしたおやつを買いに行くだけでも大量の汗をかきます。扇風機を使...
検索アルゴリズム - 指定された開始点から指定された終了点までのパスを計算するグラフ検索アルゴリズム...
企業のデジタル変革は、次々と熱狂の波をもたらしました。国際的な権威ある組織は、今後数年間の企業のデジ...
[[244078]]コンピュータサイエンスには多くの用語があり、それらの多くは一貫して使用されてい...
[[252833]]無人スーパーで買い物をすることに慣れている人なら、ある日のある瞬間、他のスーパ...
本日の講演は、アリババCIOアカデミーが開催した人工知能(AI)技術に関する特別研修コースのために賈...
GPT-4V は視覚エラーマップに挑戦し、その結果は「衝撃的」でした。 「どちらの側が明るいですか」...
[[419321]]導入私は機械学習についてはよく知りませんが、先月、GitHub で Go のサン...
今日のインタビューの質問はこれです...トピックスタックデータ構造を定義します。この型でスタックの最...