最近、 MindSporeは、北京大学生物医学フロンティアイノベーションセンター( BIOPIC )化学分子工学学院の昌平研究室、深圳湾研究所のGao Yiqin教授の研究グループ、およびPengcheng研究室のChen Jieチームと共同で、フルシナリオAIフレームワークMindSporeに基づいてAlphaFold2タンパク質構造トレーニングを実装しました。 2021年11月の推論ツールのリリースに続き、このトレーニングは、国内のAIフレームワークが強力なAI for Scienceの基盤となるソフトウェア機能を備えていることを意味し、関連する科学研究者に新しい選択肢も提供します。この共同作業は、Pengcheng Cloud Brain II Ascend AIクラスターに基づいて実行され、シングルステップ反復パフォーマンスが60%以上向上し、 TMスコアが85ポイント(国際的に権威のある評価データセットCASP14 )になりました。関連するトレーニング コードはMindSporeコミュニティでオープン ソース化されており、 OpenLコミュニティでもオープン ソース化され、定期的に拡張およびメンテナンスされます。 T1052-D1予測構造 (左) CASP14 87 ターゲット TM スコア比較 (右) タンパク質構造予測とは、タンパク質の機能構造と立体配座を得るプロセスです。この問題は、半世紀近くにわたって「 21世紀の生物物理学」における最も重要なテーマの 1 つとして注目されてきました。これまで、タンパク質の立体配座の数が膨大で、計算プロセスが複雑だったため、 AIによるタンパク質構造の予測には大きな進歩がありませんでした。タンパク質の空間構造を取得する方法は、依然として主にクライオ電子顕微鏡やX線などの実験技術に基づいています。単一のタンパク質の観察コストは数ヶ月と数百万人民元に上ります。 AlphaFold2が登場するまで、この問題は新たな希望をもたらしました。 AlphaFold2 は、実験に近い精度でCASP14タンパク質の空間構造予測コンテストでトップとなり、この成果はNature 誌で「前例のない進歩」と称賛されました。 2021年7月、 DeepMindはAlphaFold2の推論コードのオープンソース化を発表しました。盛思と高易群の研究チームはそれをいち早く再現・最適化し、同年11月には盛思MindSporeをベースにした推論ツールをオープンソース化し、前年比で2~3倍の効率向上を実現しました。オープンソースの範囲は推論に限定されているため、関係する専門家はこれに基づいて最適化することができず、多くのチームがトレーニング プロセスの再現に積極的に取り組んでいます。 AlphaFold2モデル自体には、大量のメモリ要件、面倒なデータ処理、複雑な制御コンパイルなどの特性があり、基本的なAIフレームワークに大きな課題をもたらします。 最近、 MindSporeはGao Yiqinの研究グループおよびPengcheng LaboratoryのChen Jieのチームと協力し、AlphaFold2のトレーニングを完全に完了しました。 Ascend基本ソフトウェアおよびハードウェアプラットフォームを採用した後、混合精度でシングルステップ反復時間が20秒から12秒に短縮され、パフォーマンスが60%以上向上しました。 MindSpore のメモリ再利用機能を利用することで、トレーニング シーケンスの長さが384から512に増加します。 トレーニング結果をできるだけ客観的に評価するために、 MindSpore はAlphaFold2論文の付録に記載されている87 個の検証セットを選択して検証を行いました。平均TM スコアは85ポイントに達し、これは基本的にAlphaFold2と同じです。 MindSporeのタンパク質構造予測トレーニングと推論のサポートは、国内のAIソフトウェアとハードウェアのギャップを埋めます。 MindSpore は、 AlphaFold2に近いトレーニング精度に基づいて、アルゴリズム、スケール、ソフトウェアおよびハードウェア サポートの分野で改善を続け、同僚が使用できるように共有トレーニング データセットを公開する予定です。 MindSpore は、モデルの精度をさらに向上させ、アプリケーション シナリオを拡大するために、より多くの学術および産業パートナーと連携したいと考えています。 コードオープンソースパス: https://gitee.com/mindspore/mindscience/tree/dev/MindSPONGE/mindsponge/fold マインドスポア: gitee : https://gitee.com/mindspore/mindspore GitHub : https://github.com/mindspore-ai/mindspore |
<<: 電気自動車や自動運転の普及にはエネルギー補給技術の限界を乗り越えなければならない
>>: データ センターはリモート ワークプレイスをどのようにサポートできるでしょうか?
マルチモーダル大型モデルファミリーに新しいメンバーが加わりました!複数の画像とテキストを組み合わせて...
現在、ビジョントランスフォーマー (ViT) の分野には 2 つの大きな問題点があります。1. Vi...
レーダー点群のセマンティックセグメンテーションは、レーダーデータ処理における新たな課題です。このタス...
結核は古代の呼吸器感染症として人類の歴史を通じて存在し、何億人もの命を奪い、「白ペスト」として知られ...
[[424491]]近年、人工知能ブームの影響を受けて、生体認証技術は急速に進歩し、市場の発展も好調...
[[326429]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
クラウド向けに最適化された機械学習および分析のための最新プラットフォームを提供する Cloudera...
この記事では、ディープラーニングにおけるモデルを合理化する技術、量子化と蒸留について詳しく説明します...
COVID-19の流行が続き、核酸検査が広範囲で徐々に常態化している中、複数の組織が核酸検査用ロボ...
[51CTO.com クイック翻訳] ジェット推進研究所 (JPL) では、同僚がインテリジェントな...