Google: パフォーマンスの低い微調整モデルを捨てず、平均重量を計算してパフォーマンスを向上させる

Google: パフォーマンスの低い微調整モデルを捨てず、平均重量を計算してパフォーマンスを向上させる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

モデルの精度を最大化するにはどうすればよいでしょうか?

最近、Google やその他の機関は次のことを発見しました。

パフォーマンスの悪い微調整されたモデルをまだ捨てないで、平均重量を計算してください。

これにより、推論時間とメモリのオーバーヘッドを増やすことなく、モデルの精度と堅牢性を向上させることができます。

たとえば、研究者はこの方法を使用して、ImageNet1K の新しい記録90.94% を作成しました。

これを複数の画像分類および自然言語処理タスクに拡張すると、モデルの分布外パフォーマンスが向上し、新しい下流タスクのゼロショット パフォーマンスも向上します。

このメソッドにはモジュールスープという面白い名前が付けられています

すぐにフィボナッチスープのジョークを思い出しませんか? (昨日のスープ+一昨日のスープ=今日の新しいスープ)

△ Zhihuユーザー@hzwer、承認済み

レシピは全部で3つあります

これまでのことを振り返って、モデルの価値をどのように高めましたか?

まず、さまざまなハイパーパラメータを使用して複数の微調整されたモデルをトレーニングし、検証セットで最高のパフォーマンスを発揮するモデルを選択して、残りを破棄する必要がありますか?

ニューラル ネットワークは非線形であるため、さまざまな損失領域に多くのソリューションが存在する可能性があります。そのため、すべての微調整されたモデルの重みを保持して平均化する Module Soup の方法によってパフォーマンスが向上するというのは、少し意外です。

しかし、最近、同じ初期化構成から独立して最適化された微調整モデルは同じ誤差範囲内にあることが判明しました。   (エラーランドスケープの同じ盆地内にあります)

これまでの研究では、単一のトレーニング軌跡に沿った重み平均化により、ランダムに初期化されたトレーニング モデルのパフォーマンスが向上することも示されています。

著者はこれらの結論に触発された。

モジュール スープには、均一スープ、貪欲スープ、学習スープという 3 つの「レシピ」 (実装)があります

貪欲スープは、すべての重みを直接均等に平均化するよりもパフォーマンスが高いため、最も一般的に使用される実装です。

具体的には、Greedy Soup は各モデルを「スープ」の潜在的成分として順番に追加することで構築され、検証セットでのパフォーマンスが向上した場合にのみ、対応するモデルが「スープ」に保持されます。

ソートは検証セットの精度の降順で行われます。

単一の最も優れた微調整モデルを上回る

著者らは、モジュールスープの効果を判断するために包括的な微調整実験を実施しました。

最初のステップは画像とテキストのペアのコントラスト損失を使用して事前トレーニングされた CLIP と ALIGN を微調整することです。

モジュール スープ操作後、両方とも、分布内および自然分布シフト テスト セットで、最良の単一の微調整モデルよりも優れたパフォーマンスを発揮しました。

△ 左にCLIP、右にALIGN

続いて、 JFT データセットで事前トレーニングされたViT-Gモデルを実行します

つまり、ImageNet1K データセットで 90.94% の精度を達成し、CoAtNet が以前に保持していた 90.88% を破り、推論フェーズでの FLOP を 25% 削減しました。

著者は、画像分類タスクに加えて、 NLP の分野でもモジュール スープを検証しました。

次の表は、GLUE ベンチマークの 4 つのテキスト分類タスクにおける BERT モデルと T5 モデルの結果を示しています。

画像分類ほど改善は明らかではありませんが、ほとんどのタスクでは、貪欲スープは最良の単一モデルと比較してパフォーマンスを向上できることわかります

もちろん、著者はモジュールスープには適用性の面で限界があることも指摘しています。たとえば、現在テストされているモデルは、大規模な異種データセットで事前トレーニングされています。これらのモデル以外では、効果はあまり明白ではありません。

最後に、Zhihu ネットユーザー @宫酱手艺人 は、実際にはこのようなモデルパラメータの平均化は古典的なトリックであり、元のトランスフォーマー論文でも使用されていたと述べました。

見つかりましたか?

論文の宛先:
https://arxiv.org/abs/2203.0548

<<:  テスラAIディレクター:33年前にルカンのニューラルネットワークを再現したが、今とあまり変わらない

>>:  2022 年の人工知能のトレンド: AI はあなたにどのような影響を与えるでしょうか?

ブログ    

推薦する

iQIYI機械学習プラットフォーム構築実践

機械学習プラットフォームを構築する以前、iQiyi にはすでに比較的成熟したディープラーニング プラ...

...

...

...

脳とコンピュータをつなぐ技術が実現!未来の人類社会はどうなる?

人類の歴史において、あらゆる主要な技術革命は人類自身と社会全体に影響を及ぼしてきました。同じことは、...

顔認識は優れているが、業界の自制心と法的監督が依然として必要である。

近年、顔認識をめぐる論争が絶えません。少し前に、「初の顔認識事件」の第一審判決が発表され、杭州野生動...

不気味な人工知能はいつでもあなたが何を考え、何を見ているかをスパイできる

日本の科学者たちは、驚くほどの正確さで脳内を覗き込むことができる不気味な機械を開発した。この AI ...

李開復:人工知能に取って代わるのが最も難しい10の仕事

[[246854]]私の意見では、警告、悲観、パニックはすべて「廬山の本当の顔を知らない」根拠のない...

自動運転車の分野での課題は何ですか?

テスラが2015年に量産を開始して以来、わずか5、6年で自動運転(インテリジェントアシスト運転とも呼...

C言語の非数値計算でよく使われる5つの古典的なソートアルゴリズム

概要: ソートとは、一連の「順序付けられていない」レコードシーケンスを「順序付けられた」レコードシー...

...

新しいプログラミングパラダイム: Spring Boot と OpenAI の出会い

2023年にはAI技術が話題となり、プログラミングを中心に多くの分野に影響を及ぼします。 Sprin...

アレックス・グレイブス氏の新しい論文「ベイジアンフローネットワーク」は離散データ生成の問題を解決しており、論文全体が数式でいっぱいである。

最近、大規模なニューラル ネットワークが生成モデルに革命をもたらし、高解像度画像内のすべてのピクセル...

Googleは視覚障害者の走行を支援するAIシステムをテストしている

[[353439]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

Jiuzhang Cloud DataCanvas がシリーズ C 資金調達を完了: 標準化された AI インフラストラクチャの未来を定義する

最近、DataCanvasはシリーズCの資金調達を完了したことを発表しました。これはAdvantec...