多くの産業企業は実際に必要な量よりも多くのデータを保有していますが、人工知能への取り組みは期待を下回っています。企業が産業用 AI システムに入力するデータが適切に精査されるようにするために、ビッグデータを管理するための推奨事項をいくつか紹介します。 関連報道によると、多くの重工業企業は何年もかけてビッグデータを構築し、保管しているが、その価値をまだ十分に発揮できていない。産業企業の 75% が何らかの形で AI を試験的に導入していますが、AI システムの運用に関する洞察とデータ監視が不十分なため、有意義でスケーラブルな結果を達成したのは 15% 未満です。 産業用 AI の成功の鍵は、信頼できる履歴データです。このデータはビッグデータの形で調整する必要があり、通常は人工知能に適した変数が少なくて済みます。スマートデータを再設計し、適切なトレーニングを導入することで、企業は投資収益率を 5% ~ 15% 向上させることができます。 データとそれを利用する産業用 AI システムの適切な一致を確保するには、次の手順が推奨されます。 プロセスの定義専門家や企業のエンジニアと協力して、粉砕、加熱酸化、重合などの物理的および化学的変化を概説したプロセス手順の概要を作成します。主要なセンサーと計器、メンテナンス日、制限、測定単位を特定します。 データの充実生のプロセス データには常に不完全な部分が含まれます。したがって、観測可能なデータの量を最大化するために、継続的にテストするのではなく、高品質のデータセットを作成することに重点を置く必要があります。企業は、機器の立ち上げや停止時間などの非定常状態の情報や、無関係なプラント構成や動作体制からのデータなどを積極的に削除する必要があります。 次元削減AI アルゴリズムは、出力、つまり観測可能なデータを、生のセンサー データまたはその派生データで構成される一連の入力と照合することによってモデルを構築します。現代の工場で利用できるセンサーの膨大な数と相まって、これには多くの観察が必要になります。代わりに、企業は機能リストを物理プロセスを説明する入力のみに絞り込み、方程式を適用して、質量と流量を組み合わせて密度を生成するなど、センサー情報をインテリジェントに組み合わせる機能を作成する必要があります。 MLに焦点を当てるむしろ、予測精度を達成するためにモデルを継続的に微調整するのではなく、工場の改善を促進するモデルを作成することが目標です。企業は、プロセス データは当然高い相関関係を示すことを覚えておく必要があります。場合によっては、モデルのパフォーマンスが優れているように見えることがありますが、相関関係よりも分離、因果関係、構成、制御可能な変数の方が重要です。 ” モデルの実装と検証企業は、重要な機能をチェックしてモデルの結果を専門家と継続的にレビューし、物理的なプロセスと一致していることを確認する必要があります。 チームを作る重工業に AI を導入するには、オペレーター、データ サイエンティスト、自動化エンジニア、プロセス エキスパートからなる部門横断的なチームが必要です。企業はデータ サイエンスにおいて重要な役割を果たしていますが、企業全体でのプロセスの専門知識の欠如、最新のデジタル ツールや分析ツールに対する慣れの欠如、デジタル チームでの作業方法に関する知識の欠如という 3 つの主な課題に直面していることが多々あります。 |
>>: 美団の店舗ビジネスにおける異種広告混合配置の探求と実践
世界的なエネルギー危機が深刻化するにつれ、エネルギーの使用と管理の技術の継続的な開発と進歩も促進され...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
翻訳者 | 陳俊レビュー | Chonglou業界では、従来のメインフレーム アプリケーションのコー...
この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...
データセンターのワークロードが急増し続ける中、効率性を向上させてコストを削減しながら IT チームの...
夏休みがやってきました。旅行が必要です。彼/彼女にサプライズをあげたいですか?通常、私たちの旅行は自...
私たちはここ数年、自動運転車について話し合い、議論してきました。しかし、道路上では見かけません。これ...
[[238201]]過去 10 年間、学界と AI の専門家は、AI が教育に活用できるかどうかに...
ディープラーニングは急速に発展していますが、過去 2 年間に登場した多くのディープラーニング フレー...