ディープラーニング可視化ツールの包括的なレビュー(リソース付き)

ディープラーニング可視化ツールの包括的なレビュー(リソース付き)

ディープネットワークは機械学習の研究・応用分野に大きな影響を与えてきましたが、同時にディープネットワークの起源を明確に説明することは困難です。人々は複雑なプロセスをより徹底的に理解するために懸命に取り組んできました。人間の認知と世界に対する認識は主に視覚から来るため、優れた視覚化は人々が深層ネットワークを理解し、効果的な最適化と調整を行うのに効果的に役立ちます。この記事は主に ICML 視覚化ワークショップと関連論文に基づいており、いくつかの高度な視覚化の概念と方法について説明しています。

コンテンツの主な参照先: http://icmlviz.github.io/

アクティビス

Facebook が開発したインタラクティブなディープラーニング可視化システムは、生産環境における大規模モデルや機械操作の結果を鮮明かつ直感的に提示できます。このシステムは 4 つの側面で視覚化をサポートできます。

  • モデルアーキテクチャとそれに対応する計算グラフの概要
  • 活性化を調べるためのニューロン活性化マトリックスと2D視覚化への投影
  • 各インスタンスの結果に対して視覚的な分析を実行できます
  • 異なるインスタンス、サブセット、およびタイプのアクティベーション パターンを比較して誤分類の原因を見つけるために、異なるインスタンスの追加をサポートします。

大学院CAM

Grad-CAM は、Gradient-weighted Class Activation Mapping の略です。研究者らは、この勾配加重活性化マッピングを使用して畳み込みニューラル ネットワークの分類を説明し、入力画像内のモデルによって予測されたカテゴリに対応する重要度間隔を大まかに示すことを提案しました。この方法は、CNN モデル ファミリのモデル予測可視化プロセスで広く使用できます。

上の図では、猫と犬の分類が異なっていても、表示される信頼領域は同じであることがわかります。また、視覚的な質問回答のプロセスも示します。

ディープビュー

研究者らは、視覚化ツール「Deep View」に基づいて、トレーニング中の深層ネットワークの進化を研究した。判別行列と密度行列は、それぞれトレーニング中のニューロンの進化と出力特徴マップを評価するために使用されます。最終的には、トレーニング中のモデルのローカルおよびグローバルな特徴の変化を効果的に表示できる、非常に詳細な視覚分析フレームワークが確立されます。

参照:

http://www3.cs.stonybrook.edu/~mueller/people/http://101.96.8.164/icmlviz.github.io/assets/papers/2.pdf

自然言語処理のためのインタラクティブな視覚化ツール

NLP システムの出力を視覚化できるため、ユーザーはテキスト データの処理をよりよく理解し、必要な修正を行うことができます。このようなフィードバック プロセスは、モデルの精度を向上させるのに役立ちます。

参考: https://arxiv.org/pdf/1707.01890v2.pdf

LSTM

リカレント ニューラル ネットワーク、特に長期短期記憶ネットワークは、時系列信号に対する強力なツールであり、時系列入力の暗黙的なパターンを効果的に確立し、特徴付けることができます。研究者たちは、隠れ層が時間の経過とともにどのように変化するかに興味を持っており、この研究は、再帰型ニューラル ネットワークの隠れ層のダイナミクスを視覚化することに焦点を当てています。このツールを使用すると、ユーザーは入力範囲を具体的に選択し、同じパターンの大規模なデータ セットと比較したり、個々のパターンに対して統計分析を実行したりできます。

参照: http://lstm.seas.harvard.edu/

https://vcg.seas.harvard.edu/code-data

ディープ ビジュアライゼーション ツールボックス

このツールボックスを使用すると、ディープラーニング ネットワーク内の画像の各レイヤーの出力を直感的に視覚化できます。

参考: http://yosinski.com/deepvis

https://github.com/yosinski/deep-visualization-toolbox

https://deeplearning4j.org/概要

データの視覚化

参考 >> http://colah.github.io

<<:  ビッグデータと機械学習を駆使して12星座の素顔を明らかにする!

>>:  スパムボットが誤って7億件のメールアドレスとパスワードを漏洩

ブログ    
ブログ    

推薦する

860万の超軽量中国語と英語のOCRモデルをオープンソース化し、ワンストップでトレーニングと展開が可能

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

企業が大型モデルに「参入」する場合、なぜ大手メーカーによる生産が推奨されるのでしょうか?

GPT-3.5が海外で発売されてからまだ1年も経っていないし、文心易言が国内で発売されてからまだ半...

人工知能におけるコンピュータビジョンとは

人工知能(AI)には、「学習意欲を持つインテリジェントエージェント」の開発が伴います。さまざまなアク...

0からNまで、ハンワンテクノロジーが再び人工知能のトレンドに火をつける

本日、「0からNへ・原始開拓」をテーマにした2021年漢王科技秋季新製品発表会がオンラインで開催され...

...

Facebookは機械学習を使ってコンパイラを最適化

Facebook は最近、コンパイラ最適化タスクを実行するための高性能で使いやすい強化学習 (RL)...

ターゲット検出アルゴリズムにおける正長方形と不規則四辺形 IOU の Python 実装

交差対結合 (IoU) は、ターゲット検出で使用される概念です。ターゲット検出アルゴリズムをテストす...

...

AIを活用して企業に利益をもたらすにはどうすればいいでしょうか?答えはすべてあなたのためにあります

人工知能 (AI) と機械学習 (ML) は成長サイクルのピークにあるかもしれませんが、だからといっ...

人工知能は実際に最大25%の精度でパスワードを推測できる

米国のスティーブンス工科大学は、ユーザーが使用するパスワードを4分の1の精度で適切に推測できる、いわ...

TPCアライアンス設立:科学的発見の推進に向け、1兆以上のパラメータを持つAIモデルを目指す

11月16日、業界をリードする科学研究機関、米国国立スーパーコンピューティングセンター、そしてAI分...

OpenAIの謎の新モデルQ*が暴露された。取締役会に警告するにはあまりにも強力だったため、ウルトラマン解任の導火線になるかもしれない

OpenAI 宮殿ドラマが終わったばかりですが、すぐにまた別の騒動が勃発しました。ロイター通信は、ア...

最も孤独なニューラル ネットワーク: たった 1 つのニューロンですが、「クローンをシャドウ」することができます

世界で最も先進的なニューラルネットワークモデルは何ですか?それは人間の脳に違いない。人間の脳には86...

機械読解:人工知能技術の重要な分野の一つ

機械読解(MRC)は、自然言語処理の分野における最近の研究のホットスポットの 1 つであり、人間の言...