Facebook は最近、コンパイラ最適化タスクを実行するための高性能で使いやすい強化学習 (RL) 環境ライブラリである CompilerGym プロジェクトを発表しました。このライブラリは、実稼働環境でのコンパイラ最適化の問題を解決するために使用されます。
CompilerGym は Facebook の AI チームによって OpenAI Gym 上に構築され、最終的にはコード コンパイラのパフォーマンスの向上を支援することを目的としています。 「CompilerGym は重要なコンパイラ最適化問題をパッケージ化し、強化学習問題のように見せます」と発表の中で述べました。「私たちが紹介するコンパイラ最適化問題は規模が大きいです。例えば、探索空間は 104461 で、Go の探索空間よりもはるかに大きいです。一方、探索空間は無限です。強化学習の最近の進歩のおかげで、初めてこの規模の問題に取り組むことが可能になりました。CompilerGym を使用すると、ML やコンパイラの経験がある人なら誰でも、通常必要な何ヶ月もの面倒な設定時間をかけずに、すぐに問題解決に取り掛かることができます。それは、私たちがあなたに代わって作業を行ったからです。」 開発チームはまた、「私たちの目標は、MLを通じてコンパイラーを高速化するきっかけとなることです。適切に最適化されていないとプログラムが非常に遅くなり、コンピューティングリソースとエネルギーを大量に消費し、エネルギー効率の高いエッジデバイスの適用が制限され、データセンターのグリーン性が損なわれるからです」と付け加えた。 報道によると、このプロジェクトの最初のバージョンでは、Facebook は LLVM を使用したフェーズソート、GCC を使用したフラグ調整、CUDA を使用したループネスト生成という 3 つのコンパイラ問題に対する強化学習環境を提供したとのことです。また、トレーニング用の大規模なプログラム データ、結果の再現性を検証するためのスクリプト、公開リーダーボード、Web フロントエンドも提供しています。将来的には、レジスタ割り当て、ピープホール最適化、ループ最適化など、他の成熟したコンパイラの問題に対するサポートも提供する予定です。開発チームは、コンパイラと ML 研究コミュニティの連携を強化するために、さらに多くのタスク、報酬、観察、アクションを追加したいと考えています。 この記事はOSCHINAから転載したものです この記事のタイトル: Facebook は機械学習を使用してコンパイラを最適化します 記事URL: https://www.oschina.net/news/163236/facebook-compiler-gym |
<<: Google は交通信号に AI を導入して汚染を削減
>>: 機械はどのように学習するのでしょうか?人工知能の「双方向戦闘」を詳しく解説
[[218787]]編集者: Ye Yi、Shan Liu、Aileen 2017 年は機械学習の...
PyTorch Geometric (PyG) は、グラフ ニューラル ネットワーク モデルを構築し...
量子コンピュータは常に神秘的で「ハイエンド」な存在でした。中国科学院の院士である潘建偉氏はかつて、次...
全国的な大学入試が進行中で、百度のAI技術も「大学入試」に直面している。 6月7日、大学入試の中国語...
みなさんこんにちは、ピーターです〜この記事は、Kaggle での機械学習の実践的なケーススタディです...
ニューラル ネットワークは、機械学習のあらゆる側面に及ぶ幅広い用途に使用されます。この記事では、主に...
ここ数年、Python は人工知能とデータサイエンスの分野で最も人気のあるプログラミング言語になりま...
Googleチームは、AI技術を使ってユーザーの写真や検索エンジンのクエリ情報を処理し、ユーザーの生...
最高人民法院研究室民事部の陳龍野部長は、一部のモバイルアプリケーション(APP)はしばらくの間、パッ...
半月も経たないうちに、第6波がまたやってきました!現地時間5月4日、米証券取引委員会は再び「上場廃止...
この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...