Facebook は最近、コンパイラ最適化タスクを実行するための高性能で使いやすい強化学習 (RL) 環境ライブラリである CompilerGym プロジェクトを発表しました。このライブラリは、実稼働環境でのコンパイラ最適化の問題を解決するために使用されます。
CompilerGym は Facebook の AI チームによって OpenAI Gym 上に構築され、最終的にはコード コンパイラのパフォーマンスの向上を支援することを目的としています。 「CompilerGym は重要なコンパイラ最適化問題をパッケージ化し、強化学習問題のように見せます」と発表の中で述べました。「私たちが紹介するコンパイラ最適化問題は規模が大きいです。例えば、探索空間は 104461 で、Go の探索空間よりもはるかに大きいです。一方、探索空間は無限です。強化学習の最近の進歩のおかげで、初めてこの規模の問題に取り組むことが可能になりました。CompilerGym を使用すると、ML やコンパイラの経験がある人なら誰でも、通常必要な何ヶ月もの面倒な設定時間をかけずに、すぐに問題解決に取り掛かることができます。それは、私たちがあなたに代わって作業を行ったからです。」 開発チームはまた、「私たちの目標は、MLを通じてコンパイラーを高速化するきっかけとなることです。適切に最適化されていないとプログラムが非常に遅くなり、コンピューティングリソースとエネルギーを大量に消費し、エネルギー効率の高いエッジデバイスの適用が制限され、データセンターのグリーン性が損なわれるからです」と付け加えた。 報道によると、このプロジェクトの最初のバージョンでは、Facebook は LLVM を使用したフェーズソート、GCC を使用したフラグ調整、CUDA を使用したループネスト生成という 3 つのコンパイラ問題に対する強化学習環境を提供したとのことです。また、トレーニング用の大規模なプログラム データ、結果の再現性を検証するためのスクリプト、公開リーダーボード、Web フロントエンドも提供しています。将来的には、レジスタ割り当て、ピープホール最適化、ループ最適化など、他の成熟したコンパイラの問題に対するサポートも提供する予定です。開発チームは、コンパイラと ML 研究コミュニティの連携を強化するために、さらに多くのタスク、報酬、観察、アクションを追加したいと考えています。 この記事はOSCHINAから転載したものです この記事のタイトル: Facebook は機械学習を使用してコンパイラを最適化します 記事URL: https://www.oschina.net/news/163236/facebook-compiler-gym |
<<: Google は交通信号に AI を導入して汚染を削減
>>: 機械はどのように学習するのでしょうか?人工知能の「双方向戦闘」を詳しく解説
パラメータの共有や重みの複製は、ディープラーニングでは見落とされがちな領域です。しかし、この単純な概...
【51CTO.com クイック翻訳】継続的インテグレーション (CI)/継続的デリバリー (CD)...
ダブル11の大割引が戻ってきました。新規のお客様が最初に購入できる厳選商品...速達便のビジネスプロ...
この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...
最近、reddit の投稿がネットユーザーの間で大きな議論を呼びました。投稿の主な内容は、「AI モ...
中国のバレンタインデーがちょうど終わったばかりで、編集者がオンラインにアクセスするとすぐに、偉大な芸...
2023年には、個人にとっても企業にとっても「脆弱性」はほぼ普遍的な状態になります。世界経済が大き...
機械学習における偏ったデータセットの扱い方偏ったデータセットで効果的な機械学習アルゴリズムを開発する...
生成 AI の導入は昨年急増しました。このテクノロジーはイノベーションと生産性の向上を約束する一方で...
今週木曜日、アメリカのAIスタートアップ企業Inflection AIが次世代の大規模言語モデルIn...
生成型検索エンジンは、入力クエリとオンライン引用に対する応答を直接生成することで、ユーザーの情報ニー...
人工知能 (AI) は、自然科学のさまざまな分野を網羅しており、主に特定の種類の知的な人間の活動をモ...
25秒で何ができるでしょうか?人間の記者たちがまだショックを受けている間に、ロボットはデータマイニン...