人工知能モデルを使用してより優れた意思決定を促進する方法は、現在非常に注目されている研究テーマです。この記事は、価値実現と共同意思決定能力というトピックを探求する一連の記事の最初のものです。 私の母はいつも「答えはすぐ目の前にある」と言います。その理由は、現代の企業が、1) データと分析の経済力に基づいて組織を調整し、2) 「データから価値への明確な見通し」を提供できる、協力的な価値推進力を求めているからです。価値を左右する要素は、まさに私たちの目の前にあります。それは、決断です。はい、意思決定のような単純で一般的なことが、コラボレーションの接続ポイントになる可能性があります。 バリュー エンジニアリング フレームワークの基本原則 (データから価値までの明確な見通しの提供) は、組織の戦略的ビジネス イニシアチブをサポートするためにビジネス関係者が行う必要のある決定 (および決定の有効性を測定する KPI) を特定、検証、評価し、優先順位を付けることです (図 1)。 図1: 意思決定における価値実現能力 組織の戦略的事業計画を真に理解すると、その事業計画を機能的に分解して、その事業計画をサポートするためにさまざまな関係者が行う必要のある決定に分けることができます。 なぜ意思決定はビジネスとデータ サイエンスの連携を促進する強力な推進力となるのでしょうか (図 2)。
図2: 意思決定のためのコラボレーション機能 注: 決定と問題はまったく異なります。質問は理解を検証し、アイデアの形成を促進し、決定は行動を促進します。 パート01AIを活用した意思決定企業で意思決定を拡大マルコ・イアンスティとカリム・R・ラカニは、ハーバード・ビジネス・レビューに「AI時代の競争:機械知能がビジネスのルールをどう変えるか」と題する記事を掲載し、世界最大のフィンテック企業であるアント・グループが人工知能を活用して金融サービス業界を変革する方法について論じています。 Ant Group のビジネスモデルの中核は、AI 主導の意思決定企業です。この意思決定企業は、Google や Baidu で毎日何百万もの広告オークションを実施し、Didi、Grab、Lyft、Uber で提供される自動車サービスを決定し、Amazon.com でヘッドフォンやポロシャツの価格を設定し、一部の Walmart スーパーマーケットで床を掃除するロボットを稼働させ、Fidelity Investments Group で顧客サービスロボットを有効にし、さらには Zebra Medical 製の機器の X 線の意味を解釈するなど、さまざまな業務を行っています。 AI 主導の意思決定を行う企業は、変化する市場や顧客環境における意思決定を継続的に学習、適応、改善することで、ビジネス価値と運用価値を拡大する上で特に強力です (図 3)。 図3: AI主導型企業が従来の企業を上回る業績を上げる方法 図 3 で特に興味深いのは、デジタル運用モデルの軌跡 (赤) の線です。これは、データと分析資産の価値が、より多くのユーザーとユースケースで共有されるにつれて急速に高まることを示しています。この線の動作は、シュマルツォの経済的デジタル資産評価定理の効果 3 と非常によく似ています (図 4)。 図4: シュマルツォの経済的デジタル資産評価定理 AI 主導の意思決定企業をサポートする主要なテクノロジーをいくつか紹介します。
AI 主導の意思決定企業をすべての関係者に開放するには、組織は組織内の全員に分析機能のトレーニングを行う必要があります。つまり、基本的な分析機能と高度な分析機能を使用する場合の可能性の範囲を明確にする必要があります (図 5)。 図5: 分析の成熟度: 記述的分析から自律的分析へ 図 5 に示す分析成熟度曲線は、次の段階で構成されています。
分析教育プロセスの一環として、組織内の全員が、機械学習 (教師ありおよび教師なし)、強化学習、ディープラーニング、転移学習、フェデレーテッドラーニング、メタラーニング、アクティブラーニングなど、高度な分析モデルが「学習」するさまざまな方法について初期理解を深める必要があります (図 6)。 図6: さまざまなAI/ML学習手法 パート02要約するAI 主導の意思決定を継続的に学習し、適応する企業を構築するということは、すべての従業員 (およびパートナーと顧客) が構想し、構想し、試行し、失敗し、学習し、その教訓を共有し、再度試行して、データと分析を適用し、顧客、製品、サービス、運用上の価値の新たな源泉を導き出し、推進できるようにすることを意味します。これらすべてには、分析主導のイノベーションの文化を創造することが必要です。 インテリジェントな意思決定とそのコラボレーション機能の価値を今後も探求し、このトピックやその他のトピックについて取り上げていきます。 翻訳者紹介Zhu Xianzhong 氏は、51CTO のコミュニティ エディターであり、51CTO の専門ブロガー兼講師であり、濰坊の大学のコンピューター教師であり、フリーランス プログラミング コミュニティのベテランです。初期にはさまざまな Microsoft テクノロジに注力し (ASP.NET AJX および Cocos 2d-X に関連する 3 冊の技術書を編纂)、オープンソースの世界に 10 年近く携わってきました (人気のフルスタック Web 開発テクノロジに精通)。OneNet/AliOS+Arduino/ESP32/Raspberry Pi をベースとした IoT 開発テクノロジや、Scala+Hadoop+Spark+Flink などのビッグデータ開発テクノロジを理解しています。 原題: Decisions Part 1: Creating an AI-driven Decision Factory 、著者: Bill Schmarzo |
<<: 米国はチップ供給を遮断、ロシアはリソグラフィー装置の再構築を決定
>>: オックスフォード大学の最新調査:AIはベンチマーク危機に直面し、NLPは推論テストの「取り組み」に注力
10月13日、Microsoft 365 ロードマップによると、OneNote、Word、OneDr...
ガベージ コレクターは基本的に、すべてのオブジェクトが参照されている場所を追跡し、オブジェクトが参照...
ロボットや AI は人間が行う多くの作業を実行できますが、人間がロボットよりも上手にできる仕事もまだ...
1. 問題と課題1. 問題の背景2018年以来、Kuaishouの事業全体は急速に発展しており、チー...
ほとんどの場合、テクノロジーがビジネスに与える影響は徐々に増加しますが、時折、ビジネスの世界観全体を...
安価な高速インターネット、安全なクラウド ストレージ、モバイル ソリューション、低コストのデバイスの...
長い間、私の携帯電話のパッケージには主に 400 分の通話時間 + 500M のネットワーク トラフ...
車線は高レベルのセマンティクスを備えた交通標識であり、視覚ナビゲーション システムでは特に重要です。...
プラスチック廃棄物が海洋生物にとって常に恐ろしい脅威となっていることは誰もが知っているはずです。しか...
[[403226]]従来の講義には通常、PDF スライドのセットが付属します。一般的に、このような講...
教育部基礎教育司は1月11日、「教育部弁公庁による小中学校向け人工知能教育拠点の推薦に関する通知」(...
[[235932]] 「疑似AI」の台頭:テクノロジー企業がボットの仕事を人間にひそかに任せる方法...