組織のセキュリティを保護するための暗号化トラフィック分析における機械学習の役割

組織のセキュリティを保護するための暗号化トラフィック分析における機械学習の役割

脅威の攻撃者が戦術や手法を進化させ続けるにつれて(たとえば、暗号化されたトラフィック内に攻撃を隠すなど)、組織を保護することはますます困難になります。

ML暗号化トラフィック分析

これらの問題に対処するために、多くのネットワーク セキュリティ チームと運用チームは、ネットワーク トラフィックの障害、異常、脅威を特定するために機械学習 (ML) 技術を活用するようになっています。しかし、暗号化されたトラフィックがますます標準になるにつれて、従来の ML 技術は進化する必要があります。この記事では、現在使用されている ML モデルの種類を確認し、それらを Deep Packet Dynamics (DPD) 技術と組み合わせて、暗号化されたトラフィックに潜んでいる可能性のある脅威についての洞察を得る方法を探ります。

ML を効果的に使用するには、NOC チームと SOC チームに、データ収集、データ エンジニアリング、モデル スコアリングの 3 つが必要です。

データ収集では、ネットワーク パケット ストリームからメタデータを直接抽出します。データ エンジニアリングとは、生データを適切な場所に移動し、モデル入力に変換するプロセスです。これには、データの標準化や機能の作成などのタスクが含まれます。モデル スコアリングは、ML アルゴリズムをデータに適用する最終段階です。これには、モデルのトレーニングとテストに必要な手順が含まれます。

歴史的に、ML はバッチ処理モデルに依存してきました。一般的なビッグデータの場合、従来のデータ パイプラインがうまく機能します。モデルは、過去の遡及データを使用してオフラインでトレーニングされます。その後、分析用に保存されたデータに展開されます。

仕組みは次のとおりです。まず、チームは高度に設計されたデータ パイプラインを作成し、すべてのデータを巨大なデータ レイクに移植しました。次に、クエリと前処理スクリプトを実行して履歴機能を作成します。最後に、モデルは大規模なデータセットでトレーニングされます。準備ができたら、トレーニング済みのモデルを本番環境に移行します。そのためには、各データ処理ステップを外部向けアプリケーションに変換する必要があります。

大量のデータ(つまり、従来のデータベース レコード形式で保存するのではなく、保存と処理に特殊なツールを必要とする「ビッグ」データ)を保存および処理するには、コストが高額になる可能性があります。この ML アプローチには、多くのスケーリングとリソースが必要です。これは、モデル開発や長期にわたる予測モデルに非常に役立ちます。

ただし、ネットワーク トラフィックが増加するにつれて、ストリーミング ML と呼ばれる新しい代替手段が登場します。最高帯域幅のネットワークのパフォーマンス要件を超えながら、はるかに小さいリソースフットプリントを活用します。暗号化されたトラフィック分析と組み合わせることで、組織はサイバー脅威を可視化する強力なツールを手に入れることができます。これまで、ネットワーク トラフィックの研究はディープ パケット インスペクション (DPI) を使用して行われてきましたが、暗号化されるトラフィックが増えるにつれて、その有用性は低下しています。このため、市場では、豊富なメタデータ セットを提供し、ペイロード検査なしで実行できる Deep Packet Dynamics (DPD) と呼ばれる新しいテクノロジが採用されるようになりました。

DPD 機能には、プロデューサー/コンシューマー比、ジッター、RST、再送信、シーケンス パケット長とタイミング (SPLT)、バイト分布、接続セットアップ時間、ラウンドトリップ時間などのトラフィック特性が含まれます。 ML に適した高度な機能を提供し、単純な方法や強化された方法では捕捉できないパターンや異常を効果的に識別できます。しかし、これらは遡って計算することはできず、トラフィックが通過するときにリアルタイムでキャプチャする必要があります。この形式の暗号解読では、トラフィックの復号化と検査を行う処理集約型の中間者 (MITM) 手法を排除することでプライバシーが強化されます。

ストリーミング ML と DPD を組み合わせることで、SOC チームと NOC チームは高度な脅威をリアルタイムでより簡単に検出できるようになります。たとえば、このアプローチでは、ラテラルムーブメント、高度なフィッシング攻撃やウォーターホール攻撃、内部脅威活動など、ネットワーク上で進行中のランサムウェア攻撃を発見できます。このアプローチにより、暗号化の盲点も解消され、ネットワーク防御者の可視性が回復されます。

2025 年までに、ほぼすべての Web トラフィックが暗号化されるようになります。暗号化が進み(そして新たな脅威が出現する)、組織は異常なトラフィックに対する必要な可視性を得るために、ストリーミング ML(機械学習エンジンを含む)と暗号化されたトラフィック分析にさらに大きく依存する必要があります。それがなければ、攻撃者は従来のセキュリティ メカニズムを回避し、暗号化に隠れて攻撃を成功させ続けることになります。


<<:  ライブ放送週レビュー日記1日目: 価値の再形成の力についての洞察、機会と課題が目の前にあります

>>:  浙江大学がSFロボットの群れを作り上げました!自主的に考え、自律的に移動してターゲットを追跡できる

ブログ    

推薦する

2019年、AI技術は製造業が小さな努力で大きな成果を達成するのを助けるだろう

[[251579]] 2019 年には、新世代の人工知能 (AI) ソリューションが注目を集めるでし...

復旦大学の邱希鵬さんへの10の質問:大手モデルはAndroidの時代に入り、国産モデルがLIamaに取って代わることを望みます

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

小さな機械学習: 次の AI 革命

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

大規模モデルは知識グラフを効率的に作成するのに役立ちます

著者 | 崔昊レビュー | Chonglouまとめこの記事では、ナレッジ グラフと大規模言語モデルを...

...

びっくり!外国人が人間の皮膚マスクでiPhone Xに挑戦:予想外の結果

iPhone Xのレビュー解禁に伴い、海外の主要主流メディアやテクノロジーブログが関連するテストや体...

北京、自動運転路上試験の新規則を発表、有人試験も可能に

最近、北京市交通委員会は新たに改訂された「北京市自動運転車両路上試験管理実施規則(試行)」を発行し、...

2020年版ネイチャーインデックス年次リストが発表:中国の研究機関がリストを独占、中国科学院は8年連続で1位

科学研究機関の世界総合ランキングでは、中国科学院、中国科学技術大学、北京大学がトップ10にランクイン...

人工知能はビッグデータの保存と管理の効率をどのように向上させるのでしょうか?

ビッグデータのソースが多数存在し、企業が利用できるデータの量も増加しているため、ストレージ管理者にと...

GoogleはColab上のディープフェイクプロジェクトをひそかに禁止した

最近、GoogleがColaboratory(Colab)サービス上のディープフェイクプロジェクトを...

大型モデル選択ガイドがここにあります! 6つのシナリオをカバーし、最適なモデルをマッチング

最近、Claude 2 が発表され、Google Bard が中国語をサポートし、Open AI が...

8 月の Github のトップ 10 ディープラーニング プロジェクト、あなたはどれを選びますか?

ビッグデータダイジェスト制作編集者: CoolBoyみなさん、こんにちは! 先月のトップ 10 の機...

人工知能はどのようにして自分自身に目標を設定するのでしょうか?

インテリジェントシステムは独自の初期目標を決定することはできませんが、経験に基づいて独自の派生目標を...