錬金速度×7! MacでもPyTorchトレーニングでGPUアクセラレーションを利用できます

錬金速度×7! MacでもPyTorchトレーニングでGPUアクセラレーションを利用できます

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

これまでのところ、Pytorch は Mac での CPU トレーニングのみをサポートしています。

ちょうど今、Pytorch は最新バージョン v1.12 がGPU アクセラレーションをサポートできることを正式に発表しました。

M1シリーズチップを搭載したMacであれば大丈夫です。

つまり、Mac で「エリクサーを作る」には Pytorch を使う方が便利になります。

トレーニング速度は約7倍に向上します

この機能は、Pytorch と Apple の Metal エンジニアリング チームの協力により実現しました。

AppleのMetal Performance Shaders (MPS)を使用しています  PyTorch のバックエンドとして機能し、GPU アクセラレーション トレーニングを可能にします。

計算パフォーマンスを最適化するために、MPS は Metal GPU ファミリの固有の特性に合わせて各コアを微調整します。

Metal は OpenGL に似たフレームワークですが、OpenGL はさまざまなプラットフォームでのモバイル GPU レンダリングとコンピューティングに適しているのに対し、Metal は iOS/MacOS プラットフォーム専用ですが、パフォーマンスと使いやすさも考慮されています。

MPS は、Metal フレームワークに基づくライブラリであり、グラフィック処理、畳み込みニューラル ネットワークの構築、その他のタスクに GPU の高パフォーマンスを利用するために直接呼び出すことができます。

Appleは、M1 Ultra、20コアCPU、64コアGPU、128GB RAM、2TB SSDを搭載したMac Studioで公式にテストしました。

(このラインナップは、ほとんど贅沢な構成と言えます)。

彼らはそれぞれ、バッチサイズ 128 でResNet50 、バッチサイズ 64 でHuggingFace BERT 、バッチサイズ 64 でVGG16 をトレーニングしました。

下の図から、CPU アクセラレーションと比較して、GPU を使用するとモデルのトレーニング速度が約 7 倍、評価速度が最大約 20 倍向上することがわかります。

これを見て、一部のネットユーザーは、そのパフォーマンスがNvidia GPUを搭載したラップトップと比べてどうなのか疑問に思い始めました。

M1 の現在の純粋なコンピューティング性能は Nvidia 製品ほど優れていないものの、消費電力は依然として優れていると言う人もいます。今後、Apple がパフォーマンス面で徐々に追いつく可能性が非常に高いです。

全体的に、 Mac Studio は今のところかなり素晴らしいようです

彼はさらにこう説明した。

「結局のところ、これは128GB の GPU メモリを搭載し、4,800 ドルで購入できる最も安価なマシンです。GPU アクセラレーションの PyTorch サポートにより、大規模なモデルのトレーニングや大規模なバッチ サイズの構成に使用できます。」

私が行っているような DL 作業では、実際の計算能力よりもデータの読み込みがボトルネックになる可能性が高くなります。 ”

感動しましたか?

今すぐ試してみませんか?

macOS オペレーティング システムがバージョン 12.3 以上であり、arm64 ネイティブ Python がインストールされていることを確認してから、公式 Web サイトにアクセスして最新の Pytorch プレビュー バージョンをダウンロードしてください。

住所:
https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/

<<:  産業規模は500億に迫る。産業用ロボット業界は今後何をすべきか?

>>:  人工知能が金融市場をどう変えるのか

ブログ    
ブログ    
ブログ    

推薦する

百度の女性デーのポスターはスマートライフの姿を描いている:人工知能は女性をより自由にする

社会の進歩と国民の意識の高まりに伴い、社会全体が女性の権利にますます注目するようになっています。 3...

Kingsoft WPS Office 2019 正式リリース: Word、Excel、PPT を 1 つのソフトウェアで操作

7月3日、キングソフトは北京オリンピックタワーで「シンプル・クリエイティブ・シンプルではない」をテー...

マイクロソフト、AIの高得点宿題を配布、オンラインでコピーを求める

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

GitHub Copilot の盗作が確認されました! GitHub: 私たちの AI はコードを「暗唱」しません

[[409261]] GitHub Copilot は、コードを自動生成するという強力な機能により、...

人工知能が医療画像をどのように変えるか AI は医療画像の世界における第二の目となる

人工知能は多くの分野に影響を及ぼしています。しかし、いくつかの大きな変化が起こっており、その 1 つ...

業界の競争が激化する中、人工知能が経済のデジタル化をどう推進するかを見てみましょう。

新しいインフラストラクチャの配置が加速するにつれて、5G、モノのインターネット、クラウドコンピューテ...

Golang AI開発: アプリケーションにAIを統合する

[[442273]]みなさんこんにちは。プログラマーのファントムです。将来の世代のために素晴らしいア...

スタートアップにハイエンド AI を実装するにはどうすればよいでしょうか?

【51CTO.comオリジナル記事】 [[193891]] 人工知能は、1956 年のダートマス会...

...

ChatGPT は来週 6 つの主要なアップデートを予定しています。

公式発表では来週6つのメジャーアップデートが予定されているとのこと。早速見ていきましょう。写真1. ...

コンテナで AI アプリケーションを実行する際に知っておくべき 6 つの原則

現在、IT 開発の 2 つの中核トレンドとして、AI/ML とコンテナが企業で広く利用されています。...

今後 30 年間、人工知能の時代において、どの職業が消滅し、あるいは存続するのでしょうか?

最近の教育プロセスの中で、何人かの子供たちが私に大学で何を専攻すればいいかと尋ねました。将来的に発展...

AIの急速な発展によってもたらされるエネルギー需要をどう解決するか?

生成 AI テクノロジーは、単純なフレーズを驚くほどリアルな画像に変換し、世界中の人々の想像力をかき...

2024年の最大の落とし穴は?ディープラーニングに基づくエンドツーエンドの自動運転の最新レビュー

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...