最近、GoogleがColaboratory(Colab)サービス上のディープフェイクプロジェクトをひっそりと禁止したとの報道があり、これはディープフェイク目的でプラットフォームリソースを大規模に利用する時代が終わったことを意味しているかもしれない。 ご存知のとおり、Colab は、研究者がブラウザ経由で直接 Python コードを実行し、GPU などの無料のコンピューティング リソースを使用して独自のプロジェクトをサポートできるオンライン コンピューティング リソース プラットフォームです。 GPU のマルチコア特性により、Colab は Deepfake モデルなどの機械学習プロジェクトやデータ分析の実行に最適です。 ある程度の訓練を経ると、ディープフェイク技術を使ってビデオクリップ内の顔を入れ替えたり、リアルな表情を加えたりできるようになり、本物とほとんど区別がつかなくなる。しかし、この技術はフェイクニュースの拡散、リベンジポルノの作成、娯楽目的で使用されることが多いです。この技術の実際の応用において倫理的な制限がないことは、常に論争の的となってきました。 ディープフェイク禁止インターネット・アーカイブのウェブサイトarchive.orgの履歴データによると、この禁止は今月初めに行われ、Google Researchはディープフェイクを禁止プロジェクトのリストにひそかに追加したという。 DFL ソフトウェア開発者の「chervonij」が Discord コミュニティ プラットフォームで指摘したように、Colab プラットフォームでディープフェイクのトレーニングを試行するユーザーは、次のようなエラー レポートを受け取ります。
現在、多くのユーザーがColabの事前トレーニング済みモデルを使用して高解像度プロジェクトを開始しているため、アナリストは、この新しい制限がディープフェイクの世界に大きな影響を与えると予想しています。コーディングの経験がない人でも、Colab を使えばプロジェクト プロセスをスムーズに進めることができます。そのため、多くのチュートリアルでは、ユーザーが Google の「無料リソース」プラットフォームを使用して独自の Deepfake プロジェクトを開始することを推奨しています。 資源の不正使用Google が今回の禁止措置を実施しているのは倫理的な懸念からなのか、プロジェクトで使用されている無料のコンピューティング リソースの不正使用が原因なのかは不明です。 Colab はもともと、科学的目標を達成するために何千ものリソースを必要とする研究者を支援するために設立されました。これは、GPU が不足しているこの時代には特に重要です。 しかし、その逆のことが起こりました。一部のユーザーがプラットフォームの無料リソースを使用して大規模なディープフェイクモデルを作成し、Colabの利用可能なリソースを長期間大量に占有していたことが報告されました。 許可されていないアイテムの完全なリストは次のとおりです。
禁止されたこれらのプロジェクトが、通常の科学研究の基準からは程遠いものであることは容易に理解できる。一部のアイテムはフェアユースに該当しますが、Google ではフェアユースよりも不正使用のケースの方がはるかに多く見られます。 参照元: https://www.bleepingcomputer.com/news/technology/google-quietly-bans-deepfake-training-projects-on-colab/ |
機械読み取りはディープラーニングの次の大きな進歩となるだろう[[184205]] 2016 年を振り...
1. NeMoフレームワークの紹介NVIDIA NeMo は、PyTorch と PyTorch L...
映画「ヴェノム」を見たことがある友人なら、「シンビオート」が液体の形で現れることを知っているでしょう...
[[384924]]今日は、ナレッジ グラフに関する記事を書いています。これは、ナレッジ グラフに...
10月13日、元マイクロソフト幹部で元GitHub CEOのナット・フリードマン氏は、10月12日に...
PyTorch から Mxnet まで、これらの Python ディープラーニング フレームワークを...
利用できるアルゴリズムは多数あります。難しいのは、さまざまな種類の方法があり、それらの方法に拡張もあ...
最近、2018 ABC SUMMIT Baidu Cloud Intelligence Summit...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...
論文アドレス: https://www.nature.com/articles/s41562-022...
新しいインフラストラクチャにより、AI の実装が加速され、その背後にある「糧」である AI データ ...
Amazon Lex は、音声とテキストを使用してあらゆるアプリケーションに会話型インターフェースを...