ハッカーがAIとMLを駆使して企業を狙う方法

ハッカーがAIとMLを駆使して企業を狙う方法

サイバーセキュリティは AI と ML の進歩の恩恵を受けています。今日のセキュリティ チームは、疑わしい可能性のあるアクティビティに関するデータが大量に蓄積されており、干し草の山から針を探すのに苦労することがよくあります。 AI は、ネットワーク トラフィック、マルウェアの指標、ユーザーの行動傾向のパターンを識別することで、セキュリティ チームがこのデータ内の実際の脅威を見つけるのに役立ちます。

ハッカーは、企業に対して人工知能や機械学習の側面を利用することがよくあります。たとえば、クラウド環境に簡単にアクセスできるため、AI を簡単に開始し、強力で有能な学習モデルを構築できます。

ハッカーが AI と機械学習をどのように利用して企業を標的にしているのか、また AI を標的としたサイバー攻撃を防ぐ方法について見てみましょう。

ハッカーがセキュリティチームに対して AI を使用する 3 つの方法

1. AIベースのツールでマルウェアの成功をテストする

ハッカーは ML をさまざまな方法で使用できます。 1 つ目は、独自の機械学習環境を構築し、独自のマルウェアと攻撃手法をモデル化して、セキュリティ チームが探すイベントと動作の種類を決定することです。

たとえば、高度なマルウェアは、ローカル システムのライブラリやコンポーネントを変更したり、メモリ内でプロセスを実行したり、ハッカーが制御するインフラストラクチャが所有する 1 つ以上のドメインと通信したりする可能性があります。これらすべてのアクティビティが組み合わさって、戦術、テクニック、手順 (TTP) と呼ばれるプロファイルが作成されます。機械学習モデルは TTP を観察し、それを使用して検出機能を構築できます。

ハッカーは、セキュリティ チームが TTP を検出する方法を観察し、予測することで、インジケーターと動作を微妙かつ頻繁に変更し、攻撃の検出に AI ベースのツールを利用するセキュリティ チームよりも先を行くことができます。

2. 不正確なデータによるAIモデルの破壊

ハッカーは機械学習や人工知能を悪用して、不正確なデータで AI モデルを破壊し、環境を混乱させることもあります。機械学習と AI モデルは、適切にラベル付けされたデータ サンプルを使用して、正確で再現可能な検出プロファイルを構築します。ハッカーは、マルウェアに似ている無害なファイルを導入したり、誤検知となる動作パターンを作成したりすることで、AI モデルを騙して攻撃動作が悪意のあるものではないと信じ込ませることができます。また、AI トレーニングで安全とラベル付けされた悪意のあるファイルを導入することで、AI モデルを汚染することもできます。

3. 既存のAIモデルのマッピング

ハッカーは、サイバーセキュリティベンダーや運用チームが使用する既存および開発中の AI モデルを積極的にマッピングしようとしています。 AI モデルの機能とその動作を理解することで、ハッカーはサイクル中に機械学習の操作とモデルに積極的に干渉することができます。これにより、ハッカーはシステムを騙して自分に有利になるようにし、モデルに影響を与えることができる可能性があります。また、ハッカーは、特定されたパターンに基づいて検出を回避するためにデータを微妙に変更することで、既知のモデルを完全に回避することもできます。

AI中心の攻撃から身を守る方法

AIに焦点を当てた攻撃を防御するのは非常に困難です。セキュリティ チームは、学習モデルとパターン開発で使用されるデータに関連付けられたラベルが正確であることを確認する必要があります。データに正確なラベル識別子が確実に含まれるようにすると、モデルのトレーニングに使用されるデータセットが小さくなる可能性があり、AI の効率性が低下します。

AI セキュリティ検出モデルを構築する場合、モデリング時に敵対的な手法と戦略を組み込むと、パターン認識と実際の戦略を組み合わせるのに役立ちます。ジョンズ・ホプキンス大学の研究者らは、トロイの木馬やその他のマルウェアパターンの人工知能モデルの生成を支援するトロイウェアフレームワークを開発した。 MIT の研究者らは、銀行詐欺などの問題を検出するためのより回復力のある AI モデルの構築に役立つ可能性のある自然言語パターンのツール、TextFooler をリリースしました。

AI の重要性が高まるにつれ、ハッカーは独自の研究でセキュリティ チームの努力を上回ろうとするでしょう。セキュリティ チームがハッカーの攻撃戦略を常に最新の状態に維持し、防御することが重要です。

<<:  AIが考古学に参入!科学者らはディープラーニングアルゴリズムを使用して、約100万年前に人類が火を使用していた証拠を発見した。PNASに掲載。

>>:  教育における人工知能の活用方法8つ

ブログ    
ブログ    

推薦する

...

2021 年の機械学習の今後はどうなるのでしょうか?

ああ、2020年!世界的なヘルスケア問題から、テクノロジーの採用と再利用の方法の革命まで、今年はこれ...

GAFT: Python で実装された遺伝的アルゴリズム フレームワーク

序文最近、遺伝的アルゴリズムを使用していくつかのことを最適化する必要があります。当初は、最適化のため...

ブロックチェーン技術は人工知能の欠点をどのように解決できるのでしょうか?

今年の618が終わったばかりですが、宅配業者だけでなく、JDのインテリジェント配達ロボットも忙しかっ...

AIで開発効率を高めるVSCode拡張機能9選

人工知能は今年もテクノロジー分野で人気を博し続けています。特に、大規模モデルはソフトウェア開発を含む...

マイクロソフト、世界規模の公開顔認識データベース MS Celeb を削除

フィナンシャル・タイムズによると、マイクロソフトは、約10万人の1000万枚以上の画像が含まれていた...

ドローンは思考によって制御される新しい方法を経験しており、その商業的展望は非常に刺激的です。

近年、ドローン業界は非常に急速な発展を遂げていると言えます。製品面では数量が大幅に増加し、種類もます...

Pythonを全く知らなかった私がAIエンジニアになるまでに2年かかりました

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

次世代AIの導入が急増する中、新たな研究がデータの信頼性の問題を警告

信頼できる人工知能(AI)データ企業であるClouderaの新しい調査によると、米国の組織の半数以上...

...

検索意味モデルの大規模定量化実践

1. 検索セマンティックモデルの現状ERNIE: 知識統合による表現の強化は、中国語の NLP タス...

認知システムが機械学習とセマンティック技術を組み合わせるべき理由

ワインとチーズの組み合わせを識別するのに役立つアプリケーションを構築したいとします。最も優れたパフォ...

...

超低消費電力センサーソリューションがスマートビルディングを実現する方法

現在、モノのインターネット(IoT)のインフラストラクチャはすでに非常に完成しており、その適用範囲は...

...