人工知能が台頭しています。インテリジェントセキュリティの開発はどのように進んでいますか?

人工知能が台頭しています。インテリジェントセキュリティの開発はどのように進んでいますか?

セキュリティ業界は、人工知能の市場を長く有する業界として、人工知能の発展に対する理解がより明確で、その開発に対する需要もより切実です。人工知能は、高解像度化とネットワーク化に続く、セキュリティ業界の第3の技術革命を推進しています。

人工知能の急速な発展を背景に、セキュリティ業界は AI を中心とした新たなインテリジェントな旅に乗り出しました。この旅の中で、スマートセキュリティの開発はどのように進んでいますか?

"進捗"

エッジコンピューティングはエッジインテリジェンスの発展を推進します

エッジ コンピューティングとは、オブジェクトまたはデータのソースに近いネットワークのエッジでネットワーク、コンピューティング、ストレージ、およびアプリケーションのコア機能を統合し、アジャイル接続、リアルタイム ビジネス、データ最適化、アプリケーション インテリジェンス、セキュリティとプライバシー保護などの業界のデジタル化の主要なニーズを満たすために、近くでエッジ インテリジェント サービスを提供するオープン プラットフォームを指します。一言で言えば、エッジ コンピューティングは、データ ソースのエッジで実行されるコンピューティング プログラムとして理解できます。

技術の継続的な進歩に伴い、「エッジ インテリジェンス」という概念が登場し、モノのインターネットのあらゆるエッジ デバイスがデータの収集、分析と計算、通信、重要なインテリジェンスを行えるようにする新しいモデルを提案しています。新しいインテリジェント エッジ コンピューティングは、クラウド コンピューティングのパワーも活用し、クラウドを使用して大規模なエッジ デバイスを安全に構成、展開、管理し、デバイスの種類とシナリオに基づいてインテリジェンスを割り当てることができるため、クラウドとエッジの間でインテリジェンスが流れるようになり、両方の長所が実現されます。

エッジインテリジェンスがトレンドになっています。 Internet of Everythingの時代の到来により、コンピュータビジョン分野のフロントエンドデバイスによって生成される画像とビデオデータの量は膨大です。これらすべてをクラウドコンピューティングデータセンターに集約してインテリジェント分析を行うと、通信帯域幅の要件とリアルタイム要件に無限の圧力がかかります。これには、エッジ インテリジェンス サービスの近くでの提供と、人工知能の計算能力または推論機能をクラウドからエッジに段階的に移行することが必要であり、これにより伝送リンクへの負荷が軽減されます。

ディープラーニング構築がAI都市の発展を促進

セキュリティ業界は、人工知能技術の自然なトレーニングと応用分野として、人工知能の実用化を緊急に必要としています。近年、「都市脳」「交通脳」「警察脳」などの「脳」の出現に伴い、人工知能のディープラーニング技術と多次元知覚が融合し、AI都市のさらなる発展が促進されています。

ディープラーニングの主な研究分野は音声認識と視覚であり、ディープラーニングをさまざまな方向に応用することで、さまざまな分野でさまざまな技術革新を実現できます。大量のビデオ画像リソースを持つセキュリティ業界にとって、ディープラーニングとセキュリティの組み合わせは、画像分析、顔認識、テキスト処理など、画像とビデオの分析に比較的高い適合性を持っています。

セキュリティ業界におけるディープラーニングは、主に身体分析、車両分析、行動分析、画像分析の 4 つの領域に焦点を当てています。ディープラーニングアルゴリズムの進歩により、ターゲット認識、物体検出、シーンセグメンテーション、人物や車両の属性分析などのインテリジェント分析技術が飛躍的に進歩しました。

「邪魔」

人工知能のセキュリティには「コア」が大いに必要

セキュリティ業界では、チップはフロントエンドからバックエンドまで、送信、記録、保存まで、プロセス全体を実行していると言えます。「チップ」のないセキュリティは不完全なものになります。

セキュリティビデオ監視分野には膨大な量のデータがあり、ディープラーニングのトレーニングに十分なシナリオを提供できます。さらに、近年、インテリジェントアルゴリズムの開発は大量のビッグデータに依存しており、音声認識と視覚で重要な進歩を遂げ、反復が高速化しています。セキュリティ分野における人工知能の実装には、十分に強力なコンピューティング能力を備えた処理チップが必要ですが、チップレベルでは、実際の戦闘ニーズを完全に満たすことができる人工知能セキュリティアプリケーションチップは存在しません。

人間の介入を排除することは困難

人工知能は人間にはできないことをいくつか実現していますが、人工知能を大規模に適用する時期はまだ来ておらず、類似した物体を区別するには人間の介入が必要です。

実際の事例から、単一シーンのビデオを抽出すると、画像検索により関連画像を迅速に発見でき、これに基づいて容疑者の軌跡を発見し、最終的にターゲットをロックすることができます。しかし、専門家は、このプロセスは人工知能アルゴリズムに依存しており、人間の介入なしに行うことは困難であると率直に指摘しています。ビデオ犯罪捜査担当者の分析と判断なしには、依然として実行できません。

結論: 現在、セキュリティ業界はデータ爆発の時代を迎えています。データ量の爆発的な増加に直面し、従来のインテリジェント アルゴリズムでは、ディープ データ価値マイニングのニーズを満たすことができなくなりました。人工知能研究の深化と深化は、セキュリティ業界に想像を超える変化をもたらし、人工知能が役割を果たせる応用シナリオはますます増えています。

<<:  AIは新たな科学革命を先導している

>>:  AIは新たな科学革命を先導している

ブログ    

推薦する

7つのダイナミックなトレンドが将来のAIサービス市場を形作る

[Lieyun.com (WeChat ID: )] 9月14日レポート(小白訳)ソフトウェアは世界...

DES、3DES、AES、PBE対称暗号化アルゴリズムの実装と応用

[[272601]] 1. 対称暗号化アルゴリズムの概要対称暗号化アルゴリズムは、成熟した技術を備...

...

機械学習の仕事を探すとき、学歴はどの程度重要ですか?

[[254426]]機械学習の分野における知識とツールの主な特徴は、無料かつオープンであることです...

認識を覆せ!ソフトロボットは確実に変化をもたらす

最近、米国プリンストン大学の研究者らがソフトロボットを製造する新しい方法を開発しました。このロボット...

AI開発者の皆さん、こちらをお読みください: 主流のモバイルディープラーニングフレームワークの包括的なレビュー

PCと比較すると、モバイルデバイスは携帯性に優れており、普及率も高くなっています。近年、モバイルデバ...

企業セキュリティのための AI 生体認証

生体認証技術は、市場に登場した最新の AI イノベーションのおかげで、特に 2021 年には長年にわ...

機械学習モデルで機密データの忘却を実現するにはどうすればよいでしょうか?

I. 概要サイバーセキュリティ分野のデータ分析では機械学習手法がますます使用されるようになっていま...

2021年に人工知能はどのように発展するのでしょうか? 6つの予測

海外メディアの報道によると、人工知能はここ数年、着実な成長曲線を保っている。しかし、COVID-19...

Google PaLM モデルも素人によって覚醒したと宣言されましたか?業界関係者:Rational テストは GPT よりわずか 3% 優れている

「汎用人工知能」は、今や2020年代の「水から石油」の技術になりつつあります。ほぼ2週間ごとに、大規...

人工知能プロジェクトからビジネス価値をうまく引き出すための 8 つの秘訣

[[249778]] AI はビジネスに大きな可能性を秘めていますが、ほとんどの組織がそのメリットを...

...

Microsoft のエンジニアが PyTorch を使用してグラフ アテンション ネットワークを実装し、驚くべき視覚効果を実現

最近、グラフアテンションネットワークの視覚化に関するプロジェクトが多くの研究者の関心を集めており、開...

効果的なITセキュリティにとってAIと機械学習がますます重要になる理由

セキュリティ専門家の観点から見ると、現在、AI と機械学習を導入する必要性が高まっています。彼らは、...

MAmmoT により、LLM は形式論理と算術演算を学習する能力を備え、数学のジェネラリストになることができます。

数学的推論は、現代の大規模言語モデル (LLM) の重要な機能です。この分野では最近進歩が見られます...