フェイフェイ・リーのチームはロボットにViTを使用し、計画と推論を512倍高速化し、またヘ・カイミンのMAEをキューイングした。

フェイフェイ・リーのチームはロボットにViTを使用し、計画と推論を512倍高速化し、またヘ・カイミンのMAEをキューイングした。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

人間の予知能力+ViTを組み合わせるとどんな化学反応が起こるのか?

ロボットの行動計画能力が高速かつ正確になります。

これは、Fei-Fei Li 氏のチームであるMaskViTの最新の研究であり、MVM とマスク ビジョン モデリングを通じて Transformer を事前トレーニングし、ビデオ予測モデルを確立します。

結果は、MaskViT が 256×256 のビデオを生成できるだけでなく、ロボットの行動計画の推論速度を最大 512 倍向上できることを示しました。

これはどのような研究ですか?

人間からインスピレーションを得る

神経科学の分野での研究によると、人間の認知能力と知覚能力は予測メカニズムによって支えられていることが分かっています。

この世界の予測モデルは、さまざまな可能なアクションをシミュレート、評価、および選択するために使用できます。

人間の場合、このプロセスは高速かつ正確です。

ロボットに同様の予測能力を与えることができれば。そうすれば、複雑で動的な環境でさまざまなタスクを迅速に計画し、実行できるようになります。

たとえば、視覚モデルによる予測制御は 1 つの方法ですが、計算能力と精度に対する要求も高くなります。

そこで、Fei-Fei Li 氏のチームは、最近多くの進歩を遂げた ViT アーキテクチャと、Kaiming He 氏の MAE に代表される MVM とマスク視覚モデリングに基づく自己教師あり事前トレーニング済み表現について考えました。

しかし、それを実装するにはまだ多くの技術的な課題が残っています。

一方、グローバル アテンション メカニズムの複雑さは入力シーケンスの長さの 2 乗に比例するため、ビデオ処理コストが高くなりすぎます。

一方、ビデオ予測タスクと自己回帰マスクビジョンの事前トレーニングの間には矛盾があります。実際のテストでは、モデルは将来のフレーム シーケンス全体を最初から予測する必要があり、その結果、ビデオ予測の品質が低下します。

このような背景を踏まえ、Fei-Fei Li 氏のチームは、マスクビジョンモデリングを通じて Transformer を事前トレーニングし、ビデオ予測モデルを確立するMaskViTを提案しました。

具体的な設計上の決定は 2 つあります。

まず、記憶力とトレーニング効率を向上させるために、空間的注意と時空間的注意という2種類のウィンドウ注意が使用されます。

第二に、マスクされたトークンの比率はトレーニング中に変化します。

推論フェーズでは、マスク スケジューリング機能に従ってマスク レートが徐々に削減される反復的な改良によってビデオが生成されます。

実験結果

研究チームは、3つの異なるデータセットと4つの異なる指標でMaskViTを評価しました。

結果は、MaskViT が以前の高度な方法よりも優れたパフォーマンスを発揮し、最大 256 × 256 の解像度のビデオを生成できることを示しています。

BAIR ではアブレーション実験も実施されました。

その後、チームは実際のロボットでリアルタイム計画に MaskViT を使用した場合の効果を実証しました。

推論速度を最大512倍まで向上できます。

研究者らは、この研究は、最小限のドメイン知識でマスクされた視覚モデリングの一般的なフレームワークを使用して、画像エージェントに強力な予測モデルを付与することが可能であることを示していると述べています。

しかし同時に、一定の制限もあります。

たとえば、特に RoboNet などの静的な背景を持つビデオでは、各フレームを量子化するときにちらつきアーティファクトが表示される場合があります。

ビデオ予測のスケールアップは、特にカメラの動きが多いシーンでは依然として困難です。

将来的には、このビデオ予測方法をより複雑な計画アルゴリズムに統合することを検討する予定です。

今年 5 月に、He Kaiming 氏のチームが MAE のビデオ バージョンを提案し、最適なマスキング率が 90% にも達することを発見したことは特筆に値します。

論文リンク:
https://arxiv.org/abs/2206.11894

プロジェクトリンク:
https://maskedvit.github.io/

何開明氏の論文:
https://arxiv.org/abs/2205.09113

<<:  Cerebras が 1 台のマシンで 200 億のパラメータ モデルをトレーニングするという新記録を樹立

>>:  ファーウェイ、AI人材育成と科学研究の革新を促進する2つのAscendプロジェクトを開始

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

...

...

...

インテリジェントコンピューティングセンター構築の「サンゴ礁」と「灯台」

インテリジェント コンピューティング センターを「誰でもアクセス可能かつ無料」にする時が来ています。...

教育ロボットとベテラン教師の戦い:学習の効率を高めるのはどちらでしょうか?

[51CTO.com]地理的制約と教師の制約により、中国では質の高い教育資源が常に極めて不足してい...

AIは病気の予防に役立つ

手術室で外科医をサポートするロボットや、X 線や MRI 画像の評価を支援するソフトウェアが登場して...

...

リアルタイムのデータ分析と意思決定におけるエッジAIの役割

エッジAIについて学ぶエッジ AI とは、集中型のクラウド サーバーに依存するのではなく、センサー、...

人工知能は教育の新たな発展を促進し、これら3つの分野に大きな影響を与えます。

今年の流行語について聞かれたら、「人工知能」という言葉は誰もが知っていると思います。人工知能は多くの...

2019 年の ML と NLP におけるトップ 10 の研究ホットスポット

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

賈強淮: Ant大規模知識グラフの構築とその応用

1. アトラスの概要まず、ナレッジグラフの基本的な概念をいくつか紹介します。 1. ナレッジグラフと...

Google DeepMind が証明: GPT-4 の最終結果は人類の知恵の集大成です! Transformerモデルはトレーニングデータを超えて一般化できない

Transformer モデルが事前トレーニング データの範囲を超えて新しい認知と能力を一般化できる...

顔認識技術が明らかに、未来はもうすぐ「手の届くところ」に!

[51CTO.com からのオリジナル記事]昨日の記事「顔認識の威力はどれほどか? AIFR 技術...

研究によると、AppleのCSAMスキャンアルゴリズムは簡単に騙される可能性がある

最近、インペリアル・カレッジ・ロンドンの研究チームは、画像の内容を変えずに画像内容をスキャンするアル...