AIテキスト翻訳システムの品質が44%向上し、500億以上のパラメータを使用して200の言語を翻訳

AIテキスト翻訳システムの品質が44%向上し、500億以上のパラメータを使用して200の言語を翻訳

Meta Platforms は本日、Meta が社内開発した、200 言語のテキストを翻訳できる人工知能システムである NLLB-200 のシステム コードをオープンソース化しました。

Meta 社は、研究者が NLLB-200 をソフトウェア プロジェクトに簡単に適用できるように設計された一連のツールも発表しました。

Metaによれば、NLLB-200が理解できる200の言語の多くは、他のAI翻訳システムでは十分にサポートされていないとのこと。現在、最も広く使用されている翻訳ツールは 25 未満のアフリカ言語をサポートしていますが、NLLB-200 は最大 55 のアフリカ言語をサポートしています。

Meta 氏は、翻訳精度も NLLB-200 が他のツールより優れている点の 1 つであると述べました。 Meta は、機械翻訳されたテキストの品質を測定するために使用されるアルゴリズムである BLEU 評価システムを精度基準として使用します。 Meta は、NLLB-200 の BLEU スコアが以前の平均より 44% 高いと主張しています。

「私たちは、200種類の言語間で翻訳できる自社開発のAIモデルをオープンソース化したばかりです。その多くは、現在の翻訳システムではサポートされていません」とMetaのCEO、マーク・ザッカーバーグ氏は述べた。「私たちはこのプロジェクトを『No Language Left Behind(取り残された言語はない)』と呼んでいます。私たちが使用しているAIモデリング技術は、世界中の何十億もの人々が話す言語の高品質な翻訳を実現しています。」

NLLB-200 には、AI システムがデータを処理する方法を決定する構成である 500 億を超えるパラメーターがあります。 AI システムのパラメータが多ければ多いほど、その精度は高くなります。

NLLB-200 の多数のパラメータは、200 の言語を高精度でサポートできる唯一の要因ではありません。NLLB-200 システムは、Meta のエンジニアによって開発された他の多くの AI イノベーションも活用しています。

Meta は、社内で開発された LASER ツールキットを使用して機械学習関連の研究をサポートしています。このツールキットにより、研究者はニューラルネットワークをトレーニングして、ある言語で特定のタスクを実行し、比較的簡単に他の言語に適応させることができるため、翻訳に役立ちます。 Meta は、LASER の改良バージョンである LASER3 をサポートするために、新しい NLLB-200 システムを開発しました。

LASER のオリジナル バージョンには、テキストを AI システムが理解できる数学的表現に変換する特殊なコンポーネントである LSTM と呼ばれるニューラル ネットワークが含まれていました。この数学的表現は、より正確な翻訳結果を生成するのに役立ちます。 LASER3 では、Meta は LSTM ニューラル ネットワークを、同じタスクをより効率的に実行できる高度な自然言語処理モデルである Transformer に置き換えました。

Meta は、トレーニング データの収集に使用されるシステムのアップグレードや AI トレーニング ワークフローの変更など、他のいくつかの方法を使用して NLLB-200 の機能を改善しました。

Meta は、自社開発の Research SuperCluster スーパーコンピューター (写真) を使用して NLLB-200 をトレーニングしました。 Meta が 1 月に Research SuperCluster を初めて発表したとき、同社はこのシステムには 6,080 個の Nvidia の最新の A100 データセンター GPU が搭載されており、最終的には 16,000 個の GPU にアップグレードされると述べていました。

Meta は NLLB-200 を使用して Facebook、Instagram、その他のプラットフォームでより優れた自動翻訳機能を提供する予定であり、システムが 1 日あたり 250 億件以上の翻訳をサポートすることを期待しています。

Meta は社内で NLLB-200 の普及に努めるとともに、他の組織が独自のソフトウェア プロジェクトにこのシステムを適用できるよう支援する予定です。

Meta には、NLLB-200 に加えて、AI のトレーニングに使用できるオープンソース コードと、翻訳の精度を評価するための FLORES-200 と呼ばれるデータセットがあります。 Meta は、非営利団体が NLLB-200 を導入できるよう最大 20 万ドルの資金を提供します。さらに、Meta は Wikimedia Foundation と協力して、Wikipedia の記事に自動翻訳技術を適用します。

<<:  大規模なモデルをトレーニングするのは本当に難しいのでしょうか?事前トレーニング済みで使いやすく、非常に効率的な「Li Bai」モデル ライブラリが登場しました。

>>:  銀行における会話型 AI – 企業が犯しがちな 3 つの間違い

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

IEEE: ディープフェイク技術のより深い理解

ほとんどの人は本物と偽物を区別できると自信を持っていますが、ディープフェイクの台頭により、この能力は...

北京はインターネット診断と治療の監督を強化し、AIによる処方箋の自動生成を厳しく禁止する

8月21日、北京日報によると、北京市衛生健康委員会は最近、「北京市インターネット医療監督実施弁法(試...

スマート医療診断を理解するためのレポート:AIエンパワーメントと分子診断の自動化

分子診断のミッドストリーム市場は、機器メーカーや試薬メーカーによって占められています。現在の分子診断...

悪いことを学ぶのは簡単ですが、良いことを学ぶのは難しいです!人工知能は人間の人種や性別の偏見を継承する

編集者注: サンスティーンは『インターネット共和国』でアルゴリズムが私たちの認知世界に影響を与えると...

GauHuman オープンソース: ガウススプラッティングに基づく高品質の 3D 人間高速再構成およびリアルタイム レンダリング フレームワーク

論文タイトル: GauHuman: 単眼の人間動画からの関節型ガウス分布スプラッティング論文ダウンロ...

機械学習における不均衡なクラスに対処するための 5 つの戦略

クラスの不均衡: 希少疾患の機械学習データセット(陽性が約 8%)があるとします。この場合、トレーニ...

HSBC、コロナウイルス危機中にAIガードレールを導入

規制の厳しい業界の企業は、AI を導入しようとすると、いわゆる「ブラック ボックス」問題に直面するこ...

...

App Storeが検索アルゴリズムを大幅に変更:名前よりも人気に重点を置く

アメリカのテクノロジーブログ「TechCrunch」の主要寄稿者であるMG Siegler氏によると...

...

比較ベースのアルゴリズムでは、5 つの要素をソートするのに 7 回のパスが必要だと言われるのはなぜですか?

結果のソートアルゴリズムの唯一の要件は、オペランドが全順序関係を満たすことです。 a≤b かつ b≤...

...

Python 向けトップ 3 機械学習ライブラリ

[51CTO.com クイック翻訳] 難しいデータサイエンスを習得しなくても、機械学習の世界で成功で...

テクノロジー | 12人の専門家が2021年の人工知能の発展動向について語る

2020年が終わり、2021年が始まりました!私たちは最近、人工知能の専門家たちにインタビューし、2...