人工知能を定義する10のキーワード

人工知能を定義する10のキーワード

ビッグデータからChatGPTまで、人工知能を定義する10の重要な用語を紹介します。

人工知能とは、機械、特にコンピュータ システムによって人間の知能プロセスをシミュレートすることです。人工知能の具体的な応用としては、エキスパート システム、自然言語処理、音声認識、マシン ビジョンなどがあります。 AI の導入は、コンピューティング能力の向上や新しいアルゴリズムの登場だけでなく、アクセス可能なデータの増加によっても促進されています。この記事では、2023 年に人工知能を定義する 10 個の重要な用語について説明します。

ビッグデータ

詳細な洞察を得るために統計的に分析される膨大なデータセット。このデータには数十億件のレコードが含まれる可能性があり、膨大なコンピューター処理能力が必要です。あるドメインのパターンが他の領域にどのように影響するかを確認するために、データ セットがリンクされることがあります。データは、固定フィールドに構造化することも、自由に流れる情報に非構造化することもできます。多くの場合人工知能を使用したビッグデータの分析により、研究者がこれまで発見できなかったパターン、傾向、または根本的な関係が明らかになることがあります。

チャットボット

チャットボット、会話エージェント、または仮想アシスタントは、上流に記述された会話スクリプトに従ってユーザーと会話できるシステムです。その役割は、インターネット ユーザー、顧客、スタッフから頻繁に寄せられる質問にできるだけ多く回答することです。その結果、反復的なタスクを自動化でき、従業員は時間をより有効に活用できるようになります。

チャットGPT

ChatGPT インターフェースは GPT-3.5 上に構築されています。 GPT-3.5 は OpenAI によって開発された重要な言語モデルであり、大量のインターネット テキスト データでトレーニングされ、幅広い自然言語タスクを実行できるように微調整されています。たとえば、GPT-3.5 は、言語翻訳、テキスト要約、質問回答などのタスクに合わせて微調整されています。

クラウドロボティクス

これは、統合インフラストラクチャとロボット共有サービスの利点を中心に、クラウドコンピューティング、クラウドストレージ、その他のインターネットテクノロジなどのクラウドテクノロジを呼び出そうとするロボット工学の分野です。クラウドに接続すると、ロボットはクラウド内の最新データセンターの強力なコンピューティング、ストレージ、通信リソースの恩恵を受けることができ、さまざまなロボットやエージェント (他のマシン、スマート オブジェクト、人間など) からの情報を処理および共有できます。人間はインターネット経由で遠隔的にロボットにタスクを委任することもできます。

ディープラーニング

ディープラーニングは、人工ニューラルネットワークに依存する AI の別の領域です。このアプローチは、コンピューターやその他のデバイスが人間と同じように実践を通じて学習することを奨励します。ニューラル ネットワークには隠れた層があるため、「ディープ」という言葉が生まれました。予測分析を自動化するために、アルゴリズムの階層が使用されます。ディープラーニングは、衛星から来る物体を識別したり、機械の近くにいるときに危険な状況を特定して従業員の安全を確保したり、がん細胞を検出したりするために、航空宇宙や軍事を含むさまざまな業界で注目を集めています。

エッジコンピューティング

エッジ コンピューティングにより、コンピューティングがデータ ソースに近づき、レイテンシ、帯域幅、エネルギー使用量が削減されます。開発者や企業はエッジで AI を使用することで、リアルタイムのデータ処理に対するインフラストラクチャ要件を大幅に削減できます。システム障害を回避するために、スマートシティ、工場、自動運転システム向け自動車会社がこの技術を統合しています。

ゲーム人工知能

ゲーム AI は、アルゴリズムを使用してビデオ ゲーム内のランダム性を置き換える人工知能の一種です。これは、試合中にプレイヤーが人間のような知性と反応アクションを生成するために、ノンプレイヤーキャラクターが使用する計算動作です。これは最も検索されている人工知能用語の 1 つです。

GPT-4

GPT-4 は Open AI のディープラーニング研究における最新モデルであり、ディープラーニングの拡張における重要なマイルストーンです。 GPT-4 は、画像とテキストの両方の入力を受け入れ、テキスト出力を生成する、かなり大規模なマルチモーダル モデルである最初の GPT モデルでもあります。

大規模言語モデル (LLM)

LLM は機械学習アルゴリズムを使用して、人間の言語やコードを予測し、感情分析も実行します。将来の LLM は、言葉を繰り返すだけでなく、感情を反映するようになる可能性が高いでしょう。

機械学習

機械学習は人工知能の構成要素の 1 つです。この用語は、チャットボットなどの機械に自動学習能力を与えるプロセスを指します。したがって、システムはインターネット ユーザーの意図を解読し、適応的な応答を提供し、効果的な決定を下す能力を開発します。

<<:  2023 年のネットワーク パーティション: AI と自動化が状況をどのように変えるか

>>:  ビジネスにおける人工知能のリスクと限界

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

上海は質の高い農業の発展を推進:科学技術設備の改善と無人農場の建設

農業の発展は人々の生存と社会の安定に関係しています。近年、農業需要の継続的な解放、農業労働力の継続的...

眼球認識技術が魔法を発揮し、一目であなたを認識します

サイバーセキュリティは「人民の戦い」を必要とするだけでなく、科学技術の問題でもある。オンライン詐欺で...

機械学習に関する9つのよくある誤解

[51CTO.com からのオリジナル記事] 現在、機械学習テクノロジーをめぐっては多くの誇大宣伝が...

...

AI顔認識:スマート監視を開発する方法

顔認識技術は継続的に発展しており、スマート監視システムの開発に貢献しています。これらのシステムにより...

北京冬季オリンピックと人工知能が出会うと、どんな火花が散るのでしょうか?

2008年、北京オリンピックのテクノロジーと壮大な雰囲気は世界に深い印象を残しました。 2022年...

テクノロジーを活用して伝染病と闘う上で、人工知能はどのような役割を果たすのでしょうか?

業界の需要が変化するにつれて、5G、AI、ビッグデータなどの新しいテクノロジーが登場し、従来の業界に...

将来の成長の原動力は?ビッグデータ+人工知能が浸透し、私たちの生活を変える

画像ソース: Unsplash新世代情報技術の急速な発展に伴い、コンピューティング能力、データ処理能...

住宅地に顔認識システムを設置する前に、5つの主要なセキュリティの質問に答えてください

誰のため?なぜ?コミュニティ顔認識システム導入の需要の源と目的多くの居住コミュニティが顔認識システム...

北京航空航天大学はモードの壁を打ち破り、可視光と赤外線モードにわたる普遍的な物理的対抗手段を開発しました。

近年、視覚システムのセキュリティ評価の研究が徐々に深まっています。研究者は、メガネ、ステッカー、衣服...

ニッチから人気へ: 世界的な AI イノベーションが「ソフト」になった理由

この人工知能の波が出現したとき、世界中の AI 研究所が競争を重視していたことを今でも覚えています。...

AI の可能性を最大限に引き出す: 企業での導入を成功させる 5 つの鍵

ビジネスとテクノロジーに関心のある人なら誰でも、AI がすでに業界や日常生活に大きな変化をもたらして...

...

ロボットは人間の笑顔を真似することができますが、この笑顔はいつも...

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...