AI テクノロジーは二酸化炭素排出量とどのような関係があるのでしょうか?

AI テクノロジーは二酸化炭素排出量とどのような関係があるのでしょうか?

現在、世界のビジネスで大きな波を起こしている大きなトレンドが 2 つあります。 1 つ目は、企業が生産性と業務効率を向上させるために主要なプロセスを自動化および最適化しようとしているため、人工知能 (AI) の使用が急増していることです。 2つ目は、悪化する気候危機とエネルギーコストの上昇による経済的影響です。

これら 2 つのメガトレンドの交差点にあるのが、控えめなデータ センターです。適切なデータ センターを選択すれば、将来の技術進歩に対応できるだけでなく、企業の環境への影響を大幅に削減することもできます。

デジタルインフラと環境への影響

AI テクノロジーでは、大量のデータをほぼ瞬時に保存および処理できるようにするために、デジタル インフラストラクチャへの多大な投資が必要です。 人工知能アルゴリズム、特にディープラーニング モデルには、グラフィックス プロセッシング ユニット (GPU) や複数のソフトウェア フレームワークなどの大量のコンピューティング リソースが必要です。 GPT-3 大規模言語モデルで機械学習 (ML) を使用して、コンピューターが人間のような動作をするようにトレーニングするには、最大 12MW のデータが必要になり、コストは最大 300 万ドルかかる可能性があります。

その結果、デジタル インフラストラクチャのリソース、容量、スペースに対する需要が膨大になります。 汎用コンピューティング用に構築された従来のデータ センターの多くは、このような高密度のワークロードを処理するために必要な機器を収容できないため、企業は将来のニーズを満たすためにデータ センター プロバイダーを慎重に検討する必要があります。

さらに、AI テクノロジーに必要な高性能ワークロードに対応するために構築されたデータ センターには、広範な冷却機能を備えた強力なシステムが必要です。 これらの冷却システムは、従来のデータセンターの総エネルギーコストの 40% を占めると推定されており、政治的不確実性によりエネルギーコストが急騰するエネルギー危機の転換点において、リソースが大量に消費されます。

企業は、競争力を維持し、(利益を上げなくても)支払い能力を維持し、炭素削減目標を達成するという、ほぼ不可能な課題に直面しているようだ。 ここで、最新のデータセンターが役立ちます。

データセンターソリューション

データ センター プロバイダーの選択は長期的な決定であり、AI の需要が拡大し続ける中で発生する可能性のある財務、技術、環境への影響を企業が軽減したい場合、考慮すべき要素が多数あります。

高性能コンピューティング (HPC) 向けに設計された最新の専用「次世代」データセンターには、高密度戦略が採用され、進化する市場の変化に対応できる優れた接続性とセキュリティを備え、大容量のサービスに完全に対応できる必要があります。 これらの最適化された環境は、より高いコンピューティング能力とカスタマイズされた高密度ホスティングを提供し、顧客のワークロードとアプリケーションの急速かつ大規模な成長をサポートします。

しかし、理解すべき他の要素もあり、環境の不確実性というこの重要な時期に、デジタル インフラストラクチャの地理はこれまで以上に重要になります。

水力や地熱などの再生可能エネルギー源の余剰から恩恵を受けている国は、天然ガスに比べて大幅に安価な電力を安定して長期供給することができます。 同様に、気候が涼しく、気候が穏やかな国では、データセンター内の温度と湿度のレベルがより効果的に安定して維持されるため、エネルギー出力と汚染が削減され、最終的には炭素排出量も削減されます。

寒冷な気候の新しいデータセンターは、よりエネルギー効率の高い冷却システムを使用して設計できます。 たとえば、水の優れた熱伝達を利用して機器をより効率的に冷却する直接液体冷却や、データセンターから排出される熱い空気をすべてリサイクルし、余剰熱を地元のエネルギー供給業者が地域社会の家庭の暖房に使用できる熱回収技術機能などがあります。 これらはエネルギー効率が非常に高いプロセスであり、総所有コストを削減し、将来導入される可能性のある持続可能性や炭素削減基準に企業が適応するのに役立ちます。

要約すると、AI テクノロジーの台頭に必要な膨大なエネルギー需要は、企業が持つ ESG や関連する持続可能性の目標とはまったく矛盾しています。 この断絶の中心にあるのがデータセンターであり、AI を導入してエネルギーコストと二酸化炭素排出量を削減したいと考えている企業は、その場所を賢く選択するとよいでしょう。

<<:  「5年以内に人間のプログラマーはいなくなる」とスタビリティAIのボスが大胆な予測をしたところ、大物グループがそれを激しく非難した。「完全に間違っており、彼らはそれを説明するのが面倒だ」

>>:  その光景は衝撃的だ! 「世界最強」のロボット9台が国連AIロボット会議のステージに登場

ブログ    
ブログ    
ブログ    

推薦する

ステッカーでAIから見えなくなったら、AIにとんでもないバグが発生した

研究により、印刷されたステッカーだけで AI システムを「騙す」ことができ、検出システムが目の前にい...

...

バックプロパゲーションを用いた多層ニューラルネットワークのトレーニングの原理

記事「バックプロパゲーションを使用した多層ニューラル ネットワークのトレーニングの原理」では、バック...

マスク氏は人気検索に頻繁に登場、テスラは「過大評価されている」

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

ブロックチェーン技術は人工知能の欠点をどのように解決できるのでしょうか?

今年の618が終わったばかりですが、宅配業者だけでなく、JDのインテリジェント配達ロボットも忙しかっ...

中国のこの場所で:人工知能の新たな革命が起こる - 中国におけるAIの現状分析

中国はなぜ米国と同じくらい多くの人工知能研究者を育成しているにもかかわらず、機械学習などの主要分野で...

AI時代の企業の変革とイノベーション

人工知能は、私たちの生活、仕事、学習に影響を与えるだけでなく、企業の運営、戦略、組織にも影響を与える...

作業員にとって、端末に大きなモデルをインストールすることは、祝福でしょうか、それとも呪いでしょうか?

さまざまな業界の労働者は、当初は AI に取って代わられるのではないかと心配していましたが、今では ...

アート業界におけるメタバースの探究

メタバースの概念がますます普及するにつれて、さまざまな業界がこの豊かな土地を探索し始めました。多くの...

...

浙江大学の「ホッキョクグマセーター」がサイエンス誌に掲載、ダウンジャケットの5倍の断熱効果

最近は寒波が次々と襲来し、ダウンジャケットは冬を過ごすための必需品となっています。浙江大学は、暖かい...

人工知能は気候変動に対する新時代の解決策である

人類が地球環境において行った行為を元に戻すために、人工知能が私たちの手助けをしてくれるでしょう。気候...

私のディープラーニング開発環境: TensorFlow + Docker + PyCharm など。あなたの環境はどうですか?

著者: キリアンマシンハートが編集参加者: ヌルハチュ・ヌル、リー・ヤージョウこの記事では、研究者の...

GPT-4 が「Who is the Undercover」ボードゲームに大混乱を引き起こします。会話はリアルだが、人間らしさにはまだ改善の余地がある

生成 AI 研究が新たな活力を得ています。韓国チームは、GPT に「Spyfall」と呼ばれるギャン...

...