AIが都市の発展にどのように役立つか

AIが都市の発展にどのように役立つか

人工知能は、特に交通インフラに関して、都市開発の近代化という使命を変革することができます。

現代社会におけるコミュニティの計画と維持は、象に針を通すのと同じくらい簡単です。 都市計画を成功させるには、膨大なデータ、先見性、部門間の連携が必要です。

しかし、今日の最も差し迫った問題、とりわけ気候変動や多様性、公平性、包摂性などを考慮すると、困難な仕事は突如として困難な課題になってしまいます。

現代の課題には現代のテクノロジーが必要であり、人工知能ほど強力で重要な現代のツールはありません。

都市計画は、今日起こっている大きな変化に対応しながら、大量のさまざまなデータ ストリームを処理および解釈する必要がある複雑なタスクです。

AI は、その膨大な計算能力とディープラーニング機能により、交通、インフラ管理、エネルギー効率、公共の安全、市民の関与など、複雑なシステムや利害関係のネットワークを最適化するのに役立ち、都市開発の近代化というミッションに大きな変化をもたらす可能性があります。

交通インフラの最適化

都市開発の話題になると、交通インフラが頭に浮かぶことがよくありますが、それには十分な理由があります。 これは複雑で困難な課題であり、多大なリソースとさまざまな(時には競合する)ソリューションを必要とします。

都市生活は、車、歩行者、さらにはペットが混在する特徴があり、公共交通機関、自転車交通、ラッシュアワーの混雑などの考慮事項により、最適化プロジェクトは複雑になります。

各都市の独自のグリッドと地形についても同様です。 ただし、高度なビデオ分析ソフトウェアは、既存のビデオ投資を活用して、リアルタイムの監視フィード内のオブジェクトと動作を識別、処理、インデックス付けするように設計されており、都市システムが交通渋滞、道路工事、車両と歩行者の相互作用などの要因を考慮して、よりよく理解できるようにします。

AI テクノロジーにより、都市開発者は既存の監視ネットワークから洞察を得て、公共の利益に資する最適な都市計画を実現できます。

都市生活とコミュニティの改善

都市社会において唯一不変なものは変化です。都市部の人口は増加したり減少したりします。レストランは開いていますが、ショッピングモールは閉まっています。新たな犯罪多発地帯や歩行者渋滞が予告なく出現します。

以前のプログラムは十分に活用されなかったり、需要を満たさなかったりする可能性があります。都市開発者にとって、ゴールポストは常に変化しており、そのため都市計画は難しく、また非常に重要なものとなっています。

ビデオ分析ソフトウェアは、都市計画者や政策立案者が特定の傾向を特定し、さらに他の傾向が困難な課題になる前に予測するのに役立ちます。 CCTV 監視からのデータは AI を使用して処理され、都市開発者に、市民のニーズを満たしながら都市のリソースを最も効率的に使用するために必要な情報を提供します。

都市は、最も多くの市民に役立つ緑地をどこに作ることができるでしょうか。ファーマーズマーケットを計画したり、新しいスケートパークを建設したりするのに最適な場所はどこでしょうか。AI 駆動型ソフトウェアは、都市計画者が利用可能なデータ (人間のオペレーターが管理および解釈することは不可能) を理解し、インテリジェントな決定を下し、インフラ投資を最大限に活用して、コミュニティリソースを効率的に保護するのに役立ちます。

部門間のサイロを越えたデータ共有

ほとんどの都市では、特に人口が増加し、コミュニティのニーズが変化し続けると、部門やシステム間のコミュニケーションとデータ共有が課題になります。

都市の CCTV ビデオ監視カメラはセキュリティと調査の目的でのみ使用されることが多いため、多くの地方自治体の機関や部署は、その有用な洞察から利益を得られない、または単にその価値を認識していない可能性があります。

スマート シティとは、公共の利益のためにさまざまなセクターの情報技術を連携して連携するコミュニティです。 多くの場合、これは都市の既存のビデオ監視インフラストラクチャを活用するビデオ分析ソフトウェアなどの AI 駆動型テクノロジーを通じて実現されます。

部門間で情報が共有されると、都市開発者は、交通量の多い道路の穴を埋めたり、都市公園の暗い(潜在的に危険な)隅に街灯を追加したりするなど、機会、非効率性、または危険を見つけるためのツールを手に入れることができます。

AI は、都市が日常的な問題を解決するだけでなく、パンデミックへの備えなど、最新の課題を予測して対応できるようにするための処理能力と動的解釈スキルを備えています。 AI を活用したソリューションを利用することで、都市計画者は住民とシステムの安全性、健全性、強度を維持しながらコミュニティの発展に貢献できます。

<<:  ChatGPTに「カスタムコマンド」機能が追加されました

>>:  IoT人工知能の将来動向

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ディープラーニングニューラルネットワークによる予測区間

[[390133]]予測区間は、回帰問題の予測における不確実性の尺度を提供します。たとえば、95% ...

[NCTS サミット レビュー] Ele.me Qiu Huafeng: バグの検出における人工知能の応用

2019年10月26日、Testinが主催する第2回NCTS中国クラウドテスト業界サミットが北京で開...

2023年に人工知能とデータサイエンスについて知っておくべきこと

人工知能とデータサイエンスは、2023 年に最もエキサイティングで影響力のある 2 つのテクノロジー...

...

OpenAIはMicrosoftに対し、Bingチャットボットのリリースを急がないよう警告したと報じられている

6月14日のニュース:最近、人工知能の新興企業OpenAIとMicrosoftが人工知能の分野で協力...

プログラマーはAIアルゴリズムを使用して3,000匹の新しいポケモンを生成した

「人間は見たことのないものを想像することはできない」ということわざがあります。したがって、ほとんどの...

...

検索アルゴリズムはあなたの指先にあります: GitHubには最大のオープンソースアルゴリズムライブラリがあります

[[433085]]アルゴリズムは本質的に、1 つ以上の入力を受け入れ、内部計算とデータ操作を実行...

宮崎駿アニメの世界を一筆でスケッチしよう!スタンフォード大学の大型模型「𝘚𝘬𝘦𝘵𝘤𝘩-𝘢-𝘚𝘬𝘦𝘵𝘤𝘩」、スケッチが数秒で傑作に変身

絵を描くだけで高精細な絵画が現れます。たとえば中世の城を描くには、ドアと道を描くだけで、美しい城が現...

OpenAIも996に取り組んでいますか?元従業員が告白:コード貢献度4位、6日間勤務することが多かった

AI 業界の人なら、OpenAI が先進的な技術と高い給与で AI 業界のリーダーであることは知って...

2020 年の人工知能とディープラーニングの 5 つの将来トレンド

近年、人工知能は頻繁に話題になっていますが、まだ真の実現には程遠い状況です。 [[314350]]人...

成長痛に遭遇: 2017 年の AI およびビッグデータ業界のレビュー

2017 年、人工知能とビッグデータの開発では次の 10 の成長痛が発生しました。 [[216307...

Ma Yi と Shen Xiangyang が協力して、最初の CPAL 賞を発表します。 16人がライジングスター賞を受賞、その半数は中国の学者

ちょうど昨日、第 1 回 CPAL ミニマリスト アカデミック カンファレンスで、ライジング スター...

英国メディアが人工知能の軍事応用とそのリスクを分析

[[440377]]はじめに12月7日、英国のドローン戦争ウェブサイトは、人工知能が各国の軍事部門に...

...