デジタルセンサーを使用してピンホールカメラを作るにはどうすればいいですか?

デジタルセンサーを使用してピンホールカメラを作るにはどうすればいいですか?

ビッグデータダイジェスト制作

出典: IEEE

近年、ピンホール写真に対する人々の関心は年々高まり、関連する活動もますます増えています。ピンホールカメラは、さまざまな商業および国際的な写真イベントにも登場し始めています。

光学的に言えば、ピンホールにはレンズでは実現できない特性がいくつかあります。たとえば、ピンホール カメラは実質的に無限の被写界深度を持ちます。つまり、物体がどれだけ近いか遠いかに関係なく、カメラの視野内のすべての物体がはっきりと見え、色収差などのレンズによる歪みは発生しません。

しかし、ピンホールカメラの欠点も非常に明白です。購入するかDIYするかにかかわらず、ピンホールカメラではフィルムまたは写真用紙を使用する必要があるため、写真撮影のコストが急速に増加します。さらに、写真を撮ってから結果が表示されるまでに時間がかかります。

おそらく最も重要なのは、ピンホールカメラはフィルムをベースにしているため、写真を撮るには長い露出時間が必要であり、明るい日光の下でも数秒かかることが多く、そのため写真を撮る行為が台無しになったり中断されたりする可能性が高くなることです。

しかし、David というブロガーの意見では、デジタル センサーの使用により上記の問題を解決できるようです。彼は、Wi-Fi 対応の ESP32 マイクロコントローラ、microSD カード スロット、LED インジケーター、およびいくつかの低コストの画像センサー用のインターフェイスを統合した 10 ドルの ESP32-Cam ボードを持っています。

彼は OV2460 カメラ モジュールを使用しました。これを ESP32-CAM と組み合わせると、最大解像度は 1,600 x 1,200 ピクセルになります。

ビルドプロセス中に、彼はボードの汎用入力/出力ピンの 1 つにマイクロスイッチを接続し、スイッチをシャッター コントロールとして使用して画像を microSD カードに保存するためのファームウェアも作成しました。

また、いっぱいになった microSD カードに書き込もうとするなど、何か問題が発生した場合に、LED インジケーターがエラー コードを点滅するようにプログラムしました。 ESP32-CAM には多数のソフトウェア ライブラリが用意されているため、このグルー コードの作成にはそれほど時間がかかりません。

ハードウェア面では、Glowforge レーザー カッターを使用して、センサー、ESP32-CAM ボード、シャッター スイッチを収納する木箱を作成しました。重要なピンホール コンポーネントは取り外し可能なので、さまざまなコンポーネントを交換することで焦点距離を調整でき、カメラの視野を調整できます。

これにより、取り外し可能なレンズの柔軟性がピンホール写真にももたらされます。

しかし、無料のものは何もありません。ピンホールのサイズはさまざまであり、こうしたデジタルの利点の代償として、カメラのピンホールの直径を従来のピンホール カメラよりも小さくする必要があります。これは、センサーがフィルムフレームよりもはるかに小さいためです。センサーの幅は 4 mm ですが、フィルムの幅は 35 または 120 mm です。

つまり、ピンホールによって生成された完全な画像がセンサーの表面に確実に映るようにするには、センサーをフィルムよりもピンホールに近づける必要があります。必要な光学系を計算したとき、より小さなピンホールが必要であることがわかりました。

デイビッドさんはまず薄い真鍮片を見つけ、センターポンチでそれにへこみをつけました。次に、反対側から真鍮を削り取り、くぼみに達するまで削り取ります。これで素敵な小さな穴ができます。しかし、それは間違いなく大変な作業であり、カメラをテストするときには手元にいくつかのピンホールを用意しておく必要があります。

写真

そこでデイビッドさんは最終的にアルミホイルに落ち着き、それを少し伸ばして針で刺してみることにしました。多くの場合、この結果、穴が大きくなりすぎてしまいます。しかし、作業台のプラスチックの表面にホイルを置き、針をホイルに軽く押し付けると、プラスチックのせいで針の先端だけがホイルを貫通します。

この方法はあまり信頼性が高くありませんが、多数のピンホールを作成し、理想的な直径のピンホールをより迅速かつ簡単に見つけることができます。

これで完了です。次のステップは、もちろんカメラを使い始めることです。

デイビッドさんはカメラを地元の灯台に持って行き、バッテリーに接続しました。画像センサーの感度により、わずか 1 秒未満の露出時間で撮影でき、写真を microSD カードにダウンロードしてその場で見ることができます。

デイビッドは、自分が撮った写真が伝統的なピンホール写真の独特の明るい外観を保っていることに気づき、それは大きな成功だと考えることができました。

彼の意見では、内部反射によって写真がぼやけてしまうため、交換可能な光学部品の内側をマットブラックの素材でコーティングするなど、カメラ全体にまだ改善の余地があるとのこと。もう 1 つのアプローチは、LCD 画面を追加して、カメラがリアルタイムで見ているものを正確に確認することです。ESP32 コントローラーには、小さなディスプレイを駆動するのに十分な計算能力があります。

デイビッドは来年4月のWPPDをすでに楽しみにしています。

急いで試してみてください。コメント欄であなたの体験を共有してください〜

関連レポート:

https://spectrum.ieee.org/a-デジタルピンホールカメラ

<<: 

>>: 

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

3分で顔認識を始めましょう

顔認識は、AI 研究が世界にもたらした数多くの驚異のうちの 1 つです。これは多くの技術者にとって興...

[強く推奨] 史上最も包括的な IT アーキテクト技術知識マップ 34 選

この記事は、著者が長年にわたり蓄積し収集してきた知識とスキルのマップです。編集者は、これを周囲の技術...

uSens 馬 源宇: 人工知能と仮想現実が出会うとき

[51CTO.comより引用] 2017年7月21日から22日まで、51CTO主催の人工知能をテーマ...

...

ByteDanceのLi Hang: 言語ビッグモデルに関するいくつかの観察と考察

この記事は、LLM に関する著者の見解を詳しく説明しています。主なポイントは次のとおりです。 Cha...

AI はなぜこれほど普及しているのに、実装が難しいのでしょうか?

過去 10 年間で、5G、ビッグデータ、クラウド コンピューティングなどの新興テクノロジーの登場によ...

ヘルスケアにおける機械学習の悪影響

Marzyeh Ghassemi 助教授は、医療データに隠れたバイアスが人工知能のアプローチにどのよ...

70%は輸入品。中国の産業用ロボットはチップのような悲劇をどう回避できるのか?

ロボットは産業の魂です。 [[386663]]しかし、私たちの身近な国である日本が、20年もの間、世...

...

...

教育省:100 以上の AI 専門専攻を構築し、500 万人の AI 人材のギャップを埋めます。

AIが再び国家の議題に!教育部は、「国務院による新世代人工知能発展計画の公布に関する通知」を実施し...

AI主導のサイバーセキュリティチームが人間の能力拡張に取り組む

サイバー脅威の範囲は、企業資産や選挙から健康データや物理インフラまで拡大しており、新興技術の予期せぬ...

...

CDNトラフィックを節約するBrotliアルゴリズムの詳細な説明

学生だった頃、私はよく自分の個人ウェブサイトをいじっていました。最も気になった問題の 1 つは、オリ...