llama2.mojo は llama2.c より 20% 高速です。最も新しい言語 Mojo が開発者コミュニティを驚かせています

llama2.mojo は llama2.c より 20% 高速です。最も新しい言語 Mojo が開発者コミュニティを驚かせています

Python が最も人気のある言語であり、C が最も古典的な言語であるとすれば、Mojo にはその最高の言語、つまり最も新しい言語もあります。 Mojo は Python とシームレスに統合でき、その誕生は「ここ数十年で最大のプログラミングの進歩」と呼ばれています。

画像ソース: https://www.modular.com/blog/mojo-its-finally-here

Mojo が 5 月にリリースされて以来、120,000 人を超える開発者が Mojo Playground の使用に登録しており、19,000 人を超える開発者が Discord や GitHub で Mojo について活発に議論しています。 9月7日、ModularはMojoがローカルダウンロードで利用可能になると発表しました。 Mojoの当初の目標は、Pythonの35,000倍の高速化でした。最近、チームは、Mojoが動的言語と静的言語の利点を組み合わせることで、Pythonの68,000倍のパフォーマンス向上を実現したと述べました。

モジョ

Mojo は AI 開発者向けの新しいプログラミング言語であり、すでにあらゆる Python コードとのシームレスな統合をサポートしており、Python のスーパーセットへと成長する予定です。 Mojoの「魅力」を振り返ってみましょう。

  • すべてを 1 つの言語で記述: Mojo は、Python の使いやすさとシステム プログラミングのパワーを組み合わせて、AI 開発者のニーズを満たします。これにより、研究チームと展開チームは共通のコード ベースで作業できるようになり、ワークフローが合理化されます。
  • Python のパフォーマンスを最大限に引き出す: Python はどこにでもありますが、高いパフォーマンスや特殊なハードウェアを必要とするタスクの場合、Python は最適なツールではありません。 Mojo は CPU 上で高いパフォーマンスを実現し、GPU や ASIC などの特殊なアクセラレータをサポートして、C++ や CUDA に匹敵するパフォーマンスを提供します。
  • Python エコシステム全体へのアクセス: Mojo は Python エコシステムとの完全な相互運用性を提供し、Mojo の機能とパフォーマンスを活用しながら Python ライブラリをシームレスに使用できます。

Mojo ローカル ダウンロードによって提供されるツールボックスを使用すると、開発者が作業を開始しやすくなります。 Mojo SDK の初期リリースには、次のツールが含まれています。

  • Mojo ドライバー: シェル (読み取り評価印刷ループまたは REPL 用) を提供し、Mojo プログラムの構築と実行、Mojo モジュールのパッケージ化、ドキュメントの生成、コードのフォーマットを可能にします。
  • Visual Studio Code (VS Code) 拡張機能: 構文の強調表示、コードの自動補完などの機能をサポート
  • Jupyter カーネル: Python コードを含む Mojo ノートブックの構築と実行のサポート
  • デバッグサポート(近日提供予定):実行中のMojoプログラムにステップインして検査し、C++とMojoのスタックフレームを混在させることもできます。

つい最近、Mojo コミュニティのメンバーが Python プログラムを Mojo に移植しました。結果はどうでしたか?

ラマモジョ

プロジェクトアドレス: https://github.com/tairov/llama2.mojo

Mojo のリリースに伴い、この Mojo コミュニティ メンバーは llama2.py を Python から Mojo に移植することを思いつきました。 Karpathy の llama.c よりもすでに 20% 高速です。そして、このスピードはこれで終わりではなく、将来的にはさらに速くなる可能性があります。

llama2.py、llama2.c、llama2.mojo の視覚的な比較

このバージョンでは、Mojo の SIMD とベクトル化プリミティブを活用して、Python のパフォーマンスを約 250 倍向上させます。高速実行モードでも、Mojo バージョンはオリジナルの llama2.c よりも 15 ~ 20% 優れたパフォーマンスを発揮します。これは、Mojo の高度な機能によるハードウェア レベルの最適化の可能性を示しています。これにより、元の llama2.c ハードウェア最適化に基づいてどこまで実現できるかを誰もが理解できるようになります。

パフォーマンスデータの比較

もちろん、メンバーはオペレーティングシステムとハードウェアの詳細も公開しました。

この性能比較を見て、ネットユーザーたちはMojoが確かにその「強さ」を示したことに感嘆の意を表した。

しかし、一部のネットユーザーは異なる意見や別の探究の方向性を主張している。

Llama.c は、高速に実行するように調整されているのではなく、ファイル内のコードを理解するように調整されています。 llama.cpp と比較するとどうでしょうか?

モジョと彼の後ろにいるボス

Modular AI は、グローバル ML インフラストラクチャの再構築を目標に 2022 年に設立されました。LLVM と Swift プログラミング言語の共同創設者である Chris Lattner によって設立され、1 億ドルの資金を調達したばかりでした。クリス・ラトナー氏は、この資金は製品の拡張、ハードウェアのサポート、自社開発のAIプログラミング言語Mojoのさらなる開発を促進するために使用されると述べた。

クリス・ラトナー

Chris Lattner はポートランド大学のコンピュータサイエンス学部を卒業し、LLVM、Clang、MLIR、CIRCT などのコンパイラ インフラストラクチャ プロジェクトを含む、いくつかの有名な大規模プロジェクトの作成と主導の経験があります。また、Swift プログラミング言語の作成も主導しました。彼はアップルの開発ツール部門で勤務し、テスラの副社長も務めた。 2017 年 8 月、彼は Google Brain チームで、さまざまなハードウェア サポート (CPU、GPU、TPU)、基盤となるランタイム、プログラミング言語の作業を含む TensorFlow インフラストラクチャ作業を主導しました。

llama.mojo のパフォーマンス比較が公開された後、Chris Lattner 氏は Twitter で、Mojo がローカルダウンロードで利用できるようになるまであとわずか 3 日だったことを嘆きました。

<<:  GPTは「贅沢」すぎるが、代替案が多数用意されており、展開の問題を心配する必要はもうない

>>:  登ったり、ジャンプしたり、狭い隙間を通り抜けたり:オープンソースの強化学習戦略により、ロボット犬がパルクールを行えるようになる

ブログ    

推薦する

リー・ヤンがスマートシティ建設について語る:ハードウェアからプラットフォームまで、Terminusエコシステムが先導する

[51CTO.com からのオリジナル記事]質問:皆さんはスマート シティについて知っていますか? ...

...

Xunlei 創設者 Cheng Hao: 人工知能起業における 6 つの核心課題

[[205875]]まず第一に、今日ビジネスを始めようと決めたなら、インターネットよりも人工知能に重...

AI に適切なデータ戦略を構築するにはどうすればよいでしょうか?

適切なデータ戦略を使用して人工知能 (AI) を実装すると、データがシステムにシームレスに流れ込み、...

カナダ工学アカデミー会員のソン・リャン氏:将来の人工知能システムはネットワークの形で存在するだろう

12月5日、国務院の承認を得て、科学技術部と河南省政府の共催により、12月6日から8日まで河南省鄭州...

...

OpenAIの取締役会が数秒で後悔!ウルトラマン、CEOに復帰要請

たった1日で、OpenAIの取締役会は劇的に変化しました。最新のニュースによると、ウルトラマンがCE...

女の子があなたを好きかどうか知りたいですか?ハーバード大学の10代のAIがチャット記録に基づいて恋愛の確率を計算

[[279803]] △『小林さんちのメイドラゴン』よりこの記事はAI新メディアQuantum Bi...

フォレスター:生成型AIと会話型AIが2023年のトップ10新興テクノロジーを独占

分析会社フォレスターは7月24日、2023年のトップ10新興テクノロジーレポートを発表しました。生成...

配達員はSF映画のハイテク技術を駆使し、平地を歩いているかのように100キロの重量を運ぶ。

昨日、配達員の動画がインターネット上で話題になった。動画では、ハミングバードデリバリーの配達員がテイ...

この記事では人工知能とは何かを徹底的に解説します!

人工知能 (AI) は、自然科学のさまざまな分野を網羅しており、主に特定の種類の知的な人間の活動をモ...

Salesforceは、20のコードタスクSOTAをリフレッシュするために、新しい基本的なLLMシリーズのエンコーダー/デコーダーコードT5 +を提案しています。

大規模言語モデル (LLM) は最近、コード レベルでのさまざまなダウンストリーム タスクで優れたパ...

メタバースの目!メタの機械式バイオニックアイの特許が明らかになり、バイオニック人体に搭載される予定

ロボットの皮膚、空気圧触覚手袋... Meta は将来のメタバースに、よりリアルな触覚インタラクショ...

ノキア、ネットワーク自動化におけるAI推進のためドバイに「イノベーションラボ」を開設すると発表

9月26日、海外メディアETテレコムによると、ノキアは中東とアフリカでの技術革新を促進し、ネットワー...

Microsoft が Meta との AI および PyTorch の連携を強化

Microsoft は、Meta との AI パートナーシップをさらに拡大し、Meta が AI ...