AI に適切なデータ戦略を構築するにはどうすればよいでしょうか?

AI に適切なデータ戦略を構築するにはどうすればよいでしょうか?

適切なデータ戦略を使用して人工知能 (AI) を実装すると、データがシステムにシームレスに流れ込み、正確な出力が生成されます。

人工知能は、ほぼすべての業界でさまざまな用途に使用されています。これらの AI アプリケーションはデータを処理し、出力を提供します。 AI システムの成功は、そこに入力されるデータの関連性と正確性に完全に依存します。したがって、適切なデータ戦略を作成することは、成功する AI モデルを構築および展開するための前提条件です。 AI 実装のための適切なデータ戦略を確立することで、正確なデータを継続的に入力できるようになり、AI モデルによって提供されるアクションと出力が強化されます。

AIに適したデータ戦略を構築する方法

適切なデータ戦略は、成功する AI システムを開発するための基本です。したがって、企業にとって、適切な AI データ戦略を構築するための基本原則を理解することが重要です。

AIに適したデータ戦略を構築する方法

問題の定義

問題がなければ解決策は存在しないでしょう。したがって、企業はまず、AI を実装する具体的な問題とアプリケーションを特定する必要があります。特定の問題を特定することで、AI システムのニーズに基づいて関連性のある正確なデータを収集し、その問題を解決できるようになります。これにより、無関係なデータの収集が排除され、データのクリーンアップに必要な時間がさらに短縮されます。

継続的にデータを取得

AI システムには継続的なデータの流れが必要です。したがって、企業は継続的に新しいデータを収集し、それを既存のデータと簡単に統合するための戦略を策定する必要があります。これにより、データ漏洩を防ぐことができます。企業は、シームレスな統合を可能にするために、現在のデータと新しく取得したデータすべてに正確なラベルを付ける必要があります。ラベル付けされたデータはデータの分類に役立ち、既存のデータと新しいデータをマージするプロセスが簡素化されます。

データアーキテクチャを決定する

さまざまな事業分野を持つ組織では、多くの場合、複数のソースからデータを収集します。このような企業は、さまざまなソースからデータを収集し、意味のある方法で統合するためのデータ アーキテクチャを作成する必要があります。これにより、トレーニング用のデータセットを準備して AI システムへ入力するために必要な時間が最小限に抑えられます。したがって、AI モデルの実装と統合にかかる時間が短縮されます。

データガバナンスの確立

AI システムの結論と出力は、入力データの精度に完全に依存します。したがって、企業は AI システムに提供されるデータが信頼できるソースからのものであることを確認する必要があります。また、データを取得する際には、データプライバシー条件を遵守し、すべての標準法に準拠していることも確認する必要があります。

データの管理と保護

データ侵害は企業にさまざまな影響を及ぼします。しかし、AI モデルの場合、データの損失はシステムの完全な崩壊につながります。また、バックアップがない場合、元のデータを取得するのにかなりの時間がかかります。したがって、企業はデータ パイプラインのセキュリティを確保することが不可欠です。データ中心のセキュリティなどのサイバーセキュリティ戦略を策定し、オンラインデータ転送にファイアウォールを設置してセキュリティを強化する必要があります。

今日のデジタル世界では、あらゆる企業がデータを可能な限り最善の方法で使用したいと考えていますが、ほとんどの企業はまだデータ主導型になっていません。ある調査によると、さまざまな一流企業の従業員のうち、自社をデータ主導型であると分類しているのはわずか 31% です。 AI に適したデータ戦略を採用すると、AI システムの運用に必要な労力が削減され、分析機能を通じて洞察が得られます。これにより、データの最適な使用が可能になり、企業がデータ主導の組織になるのに役立ちます。

<<:  高性能な PyTorch はどのように実現されるのでしょうか?経験豊富な専門家がまとめた落とし穴を避ける10のヒント

>>:  最も強力なモザイク除去AIが登場。数分でモザイクのない世界に戻り、ピクセルスタイルの「Minecraft」キャラクターも復元できます。

ブログ    
ブログ    

推薦する

Volcano Engine は Deepin Technology が業界初の 3D 分子事前トレーニング モデル Uni-Mol をリリースするのを支援します

新薬の継続的な登場により、人間の生活の質と平均寿命はある程度向上しました。医薬品設計の分野では、薬物...

PyTorch を使用したノイズ除去拡散モデルの実装

ノイズ除去拡散確率モデル (DDPM) の仕組みを詳しく検討する前に、生成 AI の進歩、具体的には...

複合現実技術による医療シナリオ、Weizhuo Zhiyuan は 3D シーンを使用して病変を正確に特定します

[51CTO.comからの原文] 今日の医療業界は、次第にテクノロジー化と精密化が進んでいます。医療...

Java 開発者のための機械学習の事例

翻訳者 |陳俊レビュー | Chonglou昨年以来、 ChatGPTやBardなどの大規模言語モデ...

究極のAlp​​haGo、DeepMindの新アルゴリズムMuZero、著者の解釈

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

私たちのプライバシーはどこにも見つからない

あなたに関するあらゆることが、さまざまな形で世界に明らかにされています。 [[387859]] 3月...

李碩:AIは産業知能の波を促進する

2020年12月29日、2020年産業インターネットイノベーション大会(第4回)が盛大に開幕しました...

...

...

...

...

ビッグニュース! Meta が「次世代」の大型モデル Llama 2 をオープンソース化、Zuckerberg: 無料かつ商用利用可能!

今朝早く、私たちがまだ寝ている間に、海の向こうの Meta が大きなことをしました。Llama 2 ...

ITリーダーが避けるべき6つのGenAIの落とし穴

OpenAI が最近発表した ChatGPT のカスタム バージョンにより、あらゆる企業が GenA...

ヘルスケアにおける人工知能:現在と未来

IDCが発表した最新データによると、ソフトウェア、ハードウェア、サービスを含む世界の人工知能の収益は...