AI に適切なデータ戦略を構築するにはどうすればよいでしょうか?

AI に適切なデータ戦略を構築するにはどうすればよいでしょうか?

適切なデータ戦略を使用して人工知能 (AI) を実装すると、データがシステムにシームレスに流れ込み、正確な出力が生成されます。

人工知能は、ほぼすべての業界でさまざまな用途に使用されています。これらの AI アプリケーションはデータを処理し、出力を提供します。 AI システムの成功は、そこに入力されるデータの関連性と正確性に完全に依存します。したがって、適切なデータ戦略を作成することは、成功する AI モデルを構築および展開するための前提条件です。 AI 実装のための適切なデータ戦略を確立することで、正確なデータを継続的に入力できるようになり、AI モデルによって提供されるアクションと出力が強化されます。

AIに適したデータ戦略を構築する方法

適切なデータ戦略は、成功する AI システムを開発するための基本です。したがって、企業にとって、適切な AI データ戦略を構築するための基本原則を理解することが重要です。

AIに適したデータ戦略を構築する方法

問題の定義

問題がなければ解決策は存在しないでしょう。したがって、企業はまず、AI を実装する具体的な問題とアプリケーションを特定する必要があります。特定の問題を特定することで、AI システムのニーズに基づいて関連性のある正確なデータを収集し、その問題を解決できるようになります。これにより、無関係なデータの収集が排除され、データのクリーンアップに必要な時間がさらに短縮されます。

継続的にデータを取得

AI システムには継続的なデータの流れが必要です。したがって、企業は継続的に新しいデータを収集し、それを既存のデータと簡単に統合するための戦略を策定する必要があります。これにより、データ漏洩を防ぐことができます。企業は、シームレスな統合を可能にするために、現在のデータと新しく取得したデータすべてに正確なラベルを付ける必要があります。ラベル付けされたデータはデータの分類に役立ち、既存のデータと新しいデータをマージするプロセスが簡素化されます。

データアーキテクチャを決定する

さまざまな事業分野を持つ組織では、多くの場合、複数のソースからデータを収集します。このような企業は、さまざまなソースからデータを収集し、意味のある方法で統合するためのデータ アーキテクチャを作成する必要があります。これにより、トレーニング用のデータセットを準備して AI システムへ入力するために必要な時間が最小限に抑えられます。したがって、AI モデルの実装と統合にかかる時間が短縮されます。

データガバナンスの確立

AI システムの結論と出力は、入力データの精度に完全に依存します。したがって、企業は AI システムに提供されるデータが信頼できるソースからのものであることを確認する必要があります。また、データを取得する際には、データプライバシー条件を遵守し、すべての標準法に準拠していることも確認する必要があります。

データの管理と保護

データ侵害は企業にさまざまな影響を及ぼします。しかし、AI モデルの場合、データの損失はシステムの完全な崩壊につながります。また、バックアップがない場合、元のデータを取得するのにかなりの時間がかかります。したがって、企業はデータ パイプラインのセキュリティを確保することが不可欠です。データ中心のセキュリティなどのサイバーセキュリティ戦略を策定し、オンラインデータ転送にファイアウォールを設置してセキュリティを強化する必要があります。

今日のデジタル世界では、あらゆる企業がデータを可能な限り最善の方法で使用したいと考えていますが、ほとんどの企業はまだデータ主導型になっていません。ある調査によると、さまざまな一流企業の従業員のうち、自社をデータ主導型であると分類しているのはわずか 31% です。 AI に適したデータ戦略を採用すると、AI システムの運用に必要な労力が削減され、分析機能を通じて洞察が得られます。これにより、データの最適な使用が可能になり、企業がデータ主導の組織になるのに役立ちます。

<<:  高性能な PyTorch はどのように実現されるのでしょうか?経験豊富な専門家がまとめた落とし穴を避ける10のヒント

>>:  最も強力なモザイク除去AIが登場。数分でモザイクのない世界に戻り、ピクセルスタイルの「Minecraft」キャラクターも復元できます。

ブログ    

推薦する

デジタル変革の波の中で、車の購入もアルゴリズムの最適化に頼ることができるのでしょうか?

近年、デジタル変革の波に牽引され、自動車業界は着実な変革、アップグレード、ビジネスの再編を遂げていま...

機械学習の一般的な概念を普及させる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

時空間AI技術:スマートシティ分野における深層強化学習の応用入門

深層強化学習は近年人気が出てきている技術です。深層強化学習の制御および意思決定プロセスには、状態、ア...

「ロボット交通警察」が登場!最先端技術が輸送業界に力を与える

現在、科学技術の継続的な進歩により、ロボットは徐々にさまざまな産業の変革のための重要なツールとなり、...

人工知能の登場により、将来も仕事を見つけることができるのでしょうか?

そんな噂もあるんですね。ヘンリー・フォード2世(フォード・モーター社の創設者ヘンリー・フォードの孫)...

李菲菲のチームはロボット用の「模擬キッチン」を作った。洗浄、カット、調理のワンストップトレーニングである。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

5G+UAVの利点

5G+UAVの利点を見てみましょう。 [[398161]]現在、ドローンの開発は3つの大きな障害に直...

人工ニューラル ネットワークのドライバー: 活性化関数とは何ですか?

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

...

2019年の中国の人工知能産業の現状と今後の動向

[[264806]]新たな産業変革の中核的な原動力であり、将来の発展に関わる戦略的技術として、国は人...

Google Brainの主要研究:高速微分可能ソートアルゴリズム、桁違いに高速

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

EasyDLは、臨床試験データの敵対的学習と複数のアルゴリズムの比較を簡単に処理します。

[51CTO.com からのオリジナル記事] 画像学習は高度なアルゴリズムであり、画像への高い適応...

...

生成AIにおける新たな高収入の仕事

クラウドプロバイダーのサービスの需要は2024年まで増加すると予測しています。また、 AI生成技術と...