ジェネレーティブ AI でデータ エンジニアリングを変革する方法

ジェネレーティブ AI でデータ エンジニアリングを変革する方法

企業が生産性を高め、顧客体験を強化する方法を模索する中、生成 AI は今後 10 年間であらゆる業界に影響を与えると予想されています。データ エンジニアリングに関しては、エンジニアが行う必要のある手作業の量を減らし、コードの構築を支援することを目的として、大手企業によってすでにかなりの数のユース ケースがテストされています。

生成 AI がデータ エンジニアに役立つユースケースをいくつか紹介します。

データのクリーニングと準備

データにはさまざまな形式があり、データ主導のプロジェクトを成功させるための重要な要素の 1 つは、データの品質が高く、エンド プラットフォームまたはアルゴリズムで読み取り可能であることを確認することです。データ エンジニア向けには、データの再フォーマットやクリーンアップに使用できるツールがありますが、データが不完全であったり、形式がサポートされていないために、これらのツールは処理段階で停止してしまう可能性があります。

生成 AI の自然言語処理機能により、データ エンジニアは、データのバッチに対して特定のクレンジングまたは準備を要求できるようになり、互換性がないためにデータのバッチが破棄されるという問題を回避できます。

コード変換

移行または最新化プロジェクト中に、プログラミング言語またはプラットフォームの変更により、完全なコード変換が必要になる場合があります。コーディング言語間の 1 対 1 の変更が常に利用できるとは限らず、プログラマーが正しい置換を識別できる必要があるため、これは非常に時間のかかるプロセスです。

ChatGPT のような生成 AI ツールは膨大な量のデータでトレーニングされているため、ドキュメント、テスト済みコード、フォーラムを参照して複数のプログラミング言語間の最適な変換を見つけることができるため、プログラマーにとって自然なアシスタントと考えられています。

コードを生成する

コード変換と同様に、生成 AI ツールは既存のコード ベースとベスト プラクティスに基づいてトレーニングされているため、データ エンジニアはそれらを使用して、追加された内容と一致する新しいコードを生成できます。これらのツールは、既存のコードも分析し、重複コードや定型コードの量を減らすための提案も提供します。

さらに、データ エンジニアはこれらのシステムを使用してデータ パイプラインを設計および実装できるため、データの品質とアプリケーションのパフォーマンスを分析する時間を増やすことができます。

テスト

生成 AI は、パフォーマンスと安全性をテストするためにさまざまな形式で展開できます。データ エンジニアリング チームが考えていなかったエッジ ケースも含め、配信されるアプリケーションまたはサービスのプロファイルに適合するテスト ケースを生成できます。

視覚化を作成する

データを取得して視覚化できるプログラムはすでに存在しますが、生成 AI を使用すると、データ エンジニアはよりニッチな変更を要求し、さまざまなシナリオでデータがどのように見えるかをテストできます。データ エンジニアはハンドルから手を解放することで、より多くの種類の視覚化を試し、最適なものを見つけることができます。

<<: 

>>:  大規模言語モデル (LLM) の脆弱性トップ 10

ブログ    
ブログ    

推薦する

ビッグデータとクラウドコンピューティングの融合がロボット工学の未来

史上初のロボットのデザインはレオナルド・ダ・ヴィンチにまで遡ることができます。 16 世紀の変わり目...

人工知能とビッグデータ: ビジネス価値に関するデータの洞察を発見

デジタル時代において、ビッグデータと人工知能はビジネス界の重要な原動力となっています。大量のデータが...

中国の自動運転はアメリカの自動運転と比べてどう劣っているのか?

アリゾナ州フェニックスからテキサス州エルパソまでの距離は約 690 キロメートルで、地図に示されてい...

はい、純粋なSQLクエリステートメントでニューラルネットワークを実装できます。

[[229220]]よく知られているように、SQL は、開発者が大量のデータに対して効率的な操作を...

Googleの人工知能部門DeepMindが想像力を駆使した新システムを開発

北京時間8月19日のreadwriteによると、2014年にGoogleに買収された英国の人工知能企...

マッキンゼーのレポート: 2030 年までに 8 億人が機械に置き換えられ、約 1 億人の中国人が転職を余儀なくされる!

マッキンゼー・グローバル・インスティテュートは最近の報告書で、テクノロジーの進歩により、将来世界で約...

ChatGPTは、すべての過去のチャットの学習、記憶のリセット、および「読んだ後の書き込み」という新機能をテストするために公開されました。

ChatGPT は、大きな新機能をリリースしようとしている可能性があります。つまり、過去のチャット...

世界の自動運転事故を比較することで、そのデータと真実が明らかになった。

最近起きた自動車事故は、被害者の身元が明らかになったこと、運転支援技術の台頭と普及、中国の有名自動車...

フロスト&サリバンは、倉庫管理用の自律配送ロボットの市場が2025年までに272億ドルに達すると予測している。

コロナウイルスのパンデミックが業界に与える影響の程度は地域や業種によって異なると報告書は述べている合...

実用的! Python の日付と時刻の処理と計算: 時間を節約し、正確に計算します

Python の datetime モジュールは、日付と時刻の処理と計算のための豊富な機能を提供しま...

...

ドローンは都市の発展を助け、6つの側面でインテリジェントな変化をもたらす

近年、国民の高品質・高水準の都市生活への絶え間ない追求に応えるため、スマートシティ建設が大きな注目を...

ブラックボックス問題が依然としてディープラーニングの普及を妨げている

[[211063]]現在、ディープラーニングは人工知能の旗印を掲げており、将来、インテリジェントマシ...