コーディング能力はGPT-4を超え、このモデルはBig Codeランキングでトップとなり、YC創設者も賞賛している

コーディング能力はGPT-4を超え、このモデルはBig Codeランキングでトップとなり、YC創設者も賞賛している

GPT-4を上回るコーディング能力を持つと主張するモデルが、多くのネットユーザーの注目を集めている。

精度はGPT-4より10%以上高く、速度はGPT-3.5に近く、ウィンドウの長さも長くなっています。

開発者によれば、彼らのモデルは Pass@1 率 74.7% を達成し、オリジナルの GPT-4 の 67% を上回り、Big Code リストでトップになったとのことです。


このモデルは、それをベースにした開発者向け AI 検索ツールにちなんで Phind と呼ばれています。

CodeLlama-34B をベースに開発チームによって微調整されました。

Phind は、TensorRT-LLM を使用して H100 上で 1 秒あたり 100 トークンの速度で実行できます。これは GPT-4 の 5 倍です。

さらに、Phind のコンテキスト長は 16k に達し、そのうち 12k はユーザー入力に使用でき、残りの 4k は検索結果のテキスト用に予約されています。

この製品に関しては、ネットユーザーの間で多くの議論が交わされており、その結果はまちまちです。

有名なベンチャーキャピタル会社Yコンビネーターの創設者ポール・グラハム氏などの支持者は、Phindによって、より少ないリソースで大企業と競争できるようになると述べた。

一部のネットユーザーもPhindの利点を詳しく挙げている。

Phindに反対するネットユーザーの中には、以前GPT-4で書いたコードはPhindでは書けないと言う人もいる。

GPT は「毎日負けている」が、決して上回られたことはないと不満を言う人もいました。

興味深いことに、Phind アプリケーションでは、独自に開発されたモデルは「高速モデル」と呼ばれていますが、「最良モデル」は依然として GPT-4 です。

(明示的には述べられていないが、GPT-4の残り使用可能時間と最適モデルは同期して変化する)

そこで、「GPT-4 を打ち負かした」と主張するこのモデルが本当に有用なのかを確かめるために、実際にテストを実施しました。

Phind 対 GPT-4

正式に始める前に、Phind の第一印象についてお話ししたいと思います。

インターフェースは非常にシンプルで、主に検索ボックスで構成されており、ログインせずに無制限に使用できます。

左下隅にペアプログラマースイッチがあります。直感的な違いは、オンにすると回答インターフェースが対話に重点を置き、オンにしないと検索エンジンのようなものになるということです。

さらに、独自開発モデルやGPT-4も選択できます。GPT-4はログインが必要で、1日10回しか利用できません。

次のステップは、コードインタープリターがオンになっていない GPT-4 との比較テストです。

まず、LeetCode の質問から始めます。プロンプトは、元の質問に次の段落を加えたものです。

Python を使用してこの問題を解決し、一般的な解決策を示すコードを記述してください。パラメータ値を設定する必要はありません。コードは次のように始まる必要があります。
(LeetCode ページに記載されている開始スニペット)

Phind が検索によって「不正行為」するのを防ぐために、Phind のプロンプトの最後に次の文も追加しました。

情報を取得せず、自分でコードを作成してください

最初の問題は、LeetCode では組み合わせ数学の問題として分類されており、難易度は難しい、合格率は 67.1% です。

Phind はそのようなコードと説明を提供しました。テストの結果、20 個のテスト データのうち 19 個が正しかったです。

エラーはこの行にあります。ここでの出力は 3 になるはずですが、Phind によって返されるプログラム実行結果は 4 です。

エラーの原因を見つけられるかどうかを調べるために、Phin にフィードバックしてみました。分析後、テストに合格する新しいコードが見つかりました。

一方、GPT-4 は 1 回で合格しました。

次の質問に移りますが、この質問は動的計画法に関するもので、合格率は 53.9% です。

今回は、Phind と GPT-4 の両方を 1 回のパスでテストしました。

3 番目の質問の合格率は 30% 程度しかありませんが、その難しさは、質問を判断するために使用されるテスト データが大きすぎることにあると考えられます。

Phind によって提供されたコードは、最初の 12 個のテスト データ セットを通過した後、時間切れになりました。

最適化を試みるように指示しましたが、今回は単に計算が間違っていました。


GPT-4 は簡単に解けましたが、スーパー回文の概念が「正方形は回文である」ではなく「回文の正方形」と説明されているため、説明に誤りがありました。

3 つの LeetCode の質問をテストした後、Phind は 1 引き分け、2 敗で GPT-4 に負けました。

ただし、モデル自体のパフォーマンスをテストするために、プロンプトワードによる Phind の検索機能をオフにしたことに注意してください。ただし、実用的な観点からは、検索が保持されている場合、Phind はこれらの問題をうまく解決できます。

次に、今度はマインスイーパーゲームで実際の開発能力をテストしました。

Phind は特別な要件があるかどうかを尋ねます。この手順はスキップできます。

Phind はタスクを細分化し、各サブタスクを個別に検索します。

この時点でのコードもセクションごとに提供されています。興味深いことに、生成プロセス中に、Phind はさまざまなソースからのコードを使用します。

次に、Phind に完全なコードを提供させ、リンクされたサードパーティ プラットフォームを通じて直接実行します。

その結果、プログラムに入るとすぐに、プログラムが地雷の位置を非常に「配慮して」明確にマークしていることがわかりました。

しかし、今回の GPT-4 コードはさらに驚くべきもので、次のように実行されます。

どちらも正しく実行したわけではありませんが、比較すると、このラウンドでは Phind がわずかに有利です。

これらすべてをテストした後、どれが優れているかを判断するのは難しいですが、検索機能と、無料でログインが不要であるという事実を考慮すると、Phind は依然として注目に値します。

参考リンク:

https://www.phind.com/blog/phind-model-beats-gpt4-fast.

<<:  量子コンピューティングは今後10年間で物流業界を変えるだろう

>>:  北京大学のチームは、ChatGPTにとって頭痛の種であったアルゴリズムの最適化を解決し、普通のラップトップでも実行できるようにした。

ブログ    
ブログ    
ブログ    

推薦する

インテリジェントビル通信ネットワークシステムのセキュリティ管理

セキュリティ管理は常にネットワーク管理の重要な部分であり、最も重要なリンクの 1 つです。また、ユー...

DeLu Deep Vision: 3Dマシンビジョンに焦点を当て、セキュリティの「スマートアイ」を照らす

[[283588]] [51CTO.comより]先日、「勢いの刷新と知能の統合」をテーマにした世界人...

ファイアウォールは再び進化します。よりスマートで安全になりましたか?

ハッカーがネットワーク攻撃を開始すると、まず会社のパブリック IP で SSH サービスに使用される...

暗号化アルゴリズムと暗号化システムアーキテクチャに関する簡単な説明

[[436278]]背景情報インターネットの急速な発展に伴い、金融業界は情報セキュリティにますます注...

機械学習は、足を上げることから敷居に落ちることまで行います

突然、AI 時代に入ったようです。裏では、多くの友人が、来たる All in AI を迎えるために、...

...

ニューラル ネットワークのデバッグにイライラしていませんか?ここに16のヒントがあります

[[201444]]ニューラルネットワークのデバッグは、専門家にとっても困難な作業です。数百万のパラ...

Weilingsi チームは、グラフ同型性の下での同変性と高い計算効率を備えた「自然グラフ ネットワーク」メッセージ パッシング メソッドを提案しました。

最近、ウェリングスチームによる研​​究では、グラフの局所的な対称性を研究することで新しいアルゴリズム...

[ディープラーニングシリーズ] PaddlePaddle データ前処理

前回の記事では、畳み込みニューラルネットワークの基礎知識についてお話ししました。本来、この記事では、...

畳み込みニューラルネットワークの基礎を1つの記事で学びます。

今日は畳み込みニューラル ネットワークについてお話します。畳み込みニューラル ネットワークは、主に、...

Stability AIがAIプログラミングツール「StableCode」をリリース

Stability AI は、プログラミング用の最初の生成 LLM AI 製品である StableC...

...

ネットワークにおける機械学習の実際の応用

インターネット接続の需要が急速に高まっているため、企業にはネットワーク インフラストラクチャ、パフォ...

2022 年の 9 つの新しいテクノロジー トレンドと雇用機会

1. 人工知能(AI)と機械学習人工知能 (AI) は過去 10 年間で大きな注目を集めてきましたが...

...