物体検出と注釈の時代は終わったのでしょうか?

物体検出と注釈の時代は終わったのでしょうか?

急速に進化する機械学習の分野では、データのラベル付けという面倒で時間のかかる作業が依然として存在しています。画像分類、オブジェクト検出、セマンティックセグメンテーションのいずれの場合でも、手動でラベル付けされたデータセットは長い間、教師あり学習の基礎となってきました。

しかし、AutoDistill と呼ばれる革新的なツールのおかげで、状況はすぐに変わるかもしれません。

Github コード リンクは次のとおりです: https://github.com/autodistill/autodistill?source=post_page。

AutoDistill は、教師あり学習のプロセスに革命を起こすことを目的とした画期的なオープンソース プロジェクトです。このツールは、大規模で低速なベースモデルを活用して、より小型で高速な教師ありモデルをトレーニングし、ユーザーがラベルなし画像から直接、人間の介入なしにエッジで実行されるカスタムモデルの推論を実行できるようにします。

AutoDistill はどのように機能しますか?

AutoDistill の使用は、その機能と同じくらいシンプルかつ強力です。まず、ラベルのないデータがベースモデルに入力されます。次に、ベース モデルはオントロジーを使用して、ターゲット モデルをトレーニングするためのデータセットに注釈を付けます。出力は、特定のタスクを実行するように設計された精製モデルです。

これらのコンポーネントについて説明しましょう。

  • ベースモデル: ベースモデルは、Grounding DINO などの大型ベースモデルです。これらのモデルはマルチモーダルであることが多く、多くのタスクを実行できますが、多くの場合、サイズが大きく、遅く、高価です。
  • オントロジー: オントロジーは、ベース モデルにプロンプ​​トを出す方法、データセットのコンテンツの説明、およびターゲット モデルが予測する内容を定義します。
  • データセット: これは、ターゲット モデルのトレーニングに使用できる、自動的にラベル付けされたデータのセットです。データセットは、ラベルのない入力データとオントロジーを使用して基本モデルによって生成されます。
  • ターゲット モデル: ターゲット モデルは、データセットを消費し、デプロイメント用の精製モデルを出力する教師ありモデルです。ターゲット モデルの例としては、YOLO、DETR などが挙げられます。
  • 蒸留モデル: これは AutoDistill プロセスの最終出力です。これはタスクに合わせて微調整された重みのセットであり、予測を取得するために使用できます。

AutoDistill の使いやすさは実に驚くべきものです。ラベル付けされていない入力データを Grounding DINO などの基本モデルに渡し、オントロジーを使用してデータセットにラベルを付けてターゲット モデルをトレーニングすると、最終結果として、特定のタスクに合わせて高速化、精製、微調整されたモデルが生成されます。

このプロセスが実際にどのように行われているかは、ビデオでご覧いただけます: https://youtu.be/gKTYMfwPo4M

AutoDistillの影響

注釈付けに必要な膨大な手作業は、コンピューター ビジョンの広範な導入を妨げる主な障害の 1 つでした。 AutoDistill はこの障害を克服するための重要な一歩を踏み出しました。このツールの基盤となるモデルは、多くの一般的なユースケースのデータセットを自律的に作成することができ、創造的なプロンプトと少量学習を通じてその有用性を拡大する可能性があります。

しかし、これらの進歩は素晴らしいものですが、ラベル付けされたデータが不要になったことを意味するものではありません。基礎となるモデルが改良され続けると、注釈付けのプロセスにおいて人間を置き換えたり、補完したりできるようになるでしょう。しかし、現時点では、ある程度の手動による注釈付けはまだ必要です。

物体検出の未来

研究者が物体検出アルゴリズムの精度と効率を継続的に改善するにつれて、それがより広範囲の現実世界のアプリケーションに適用されるようになると期待されます。たとえば、リアルタイムの物体検出は、自動運転、監視システム、スポーツ分析などの分野で数多くの応用がある重要な研究分野です。

もう一つの難しい研究分野は、ビデオ内のオブジェクト検出です。これには、複数のフレームにわたってオブジェクトを追跡し、モーションブラーに対処することが含まれます。これらの分野での発展により、物体検出の新たな可能性が開かれ、AutoDistill のようなツールの可能性がさらに実証されるでしょう。

結論は

AutoDistill は機械学習の分野におけるエキサイティングな進歩を表しています。このツールは、基本モデルを使用して教師ありモデルをトレーニングすることで、データのラベル付けという面倒な作業が機械学習モデルの開発と展開のボトルネックではなくなる未来への道を開きます。

<<: 

>>:  北京大学と智遠は、大規模モデルが自律的にオープンワールドを探索できるようにするトレーニングフレームワークLLaMA-Riderを提案した。

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

人工知能の民主化について

人工知能 (AI) の民主化とは、AI ツール、テクノロジー、知識をより幅広い個人や組織が利用しやす...

...

推論コストが48分の1に削減されました! 1つのGPUで静止画像を動かすことができる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

世界を理解する、最新のレビューは自動運転の新しい時代を開く

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

2019年、AIバブルは崩壊寸前

[[256693]]中国工業情報化部傘下の中国情報通信研究院によると、2018年上半期の世界の人工知...

...

...

...

...

2018 年に最も人気のあるディープラーニング フレームワークはどれでしょうか?この科学的なランキングからわかることは

ディープラーニングは、機械学習の分野で最も注目されているテクノロジーです。ディープラーニング フレー...

AIが自ら騙された!生成された写真詐欺はAI識別器の目を楽々と逃れ、マスクのロボットガールフレンドと3メートルの巨人は両方とも「実現」

AI が生成した画像は非常にリアルなので、AI 自身も違いを区別できません。マスク氏とロボットのガ...

...

【ビッグガイがやってくるエピソード11】ITマネージャーの自己認識とコミュニケーション管理

[51CTO.com からのオリジナル記事] IT 部門のステータスが一向に向上しないのはなぜか、上...

...

携帯電話のAI分析で貧困削減を狙う:バークレーの研究がネイチャー誌に掲載

COVID-19パンデミックは多くの低・中所得国に壊滅的な打撃を与え、食糧不安の拡大と生活水準の急激...