DeepMindは「Transformerは事前学習データを超えて一般化できない」と指摘しているが、疑問視する人もいる。

DeepMindは「Transformerは事前学習データを超えて一般化できない」と指摘しているが、疑問視する人もいる。

マスク氏の xAI が Grok を発表した翌日、xAI はプロンプトエンジニアリングと説明可能性の研究に使用できる統合開発環境である、別の AI 製品である PromptIDE を発表しました。

新製品の継続的なリリースにより、ネットユーザーからは「xAI チームの開発スピードは驚異的だ!」という声が上がっています。

xAI は公式ブログで次のように紹介しています: PromptIDE は、迅速なエンジニアリングと説明可能性の研究のための統合開発環境です。 SDK を通じてプロンプト エンジニアリングを加速し、SDK は複雑なプロンプト テクノロジーを完了できるほか、結果分析やネットワーク出力の視覚化なども実行できます。

xAI が Grok の開発でこの技術を広範に活用したことは注目に値します。

PromptIDE を使用すると、エンジニアや研究者は Grok-1 モデル (Grok を動かすモデル) に透過的にアクセスできます。この IDE は、ユーザーが大規模モデル (LLM) の機能を素早く探索するのに役立ちます。 IDE の中心となるのは Python コード エディターであり、新しい SDK と組み合わせることで、洗練されたプロンプト技術が可能になります。 IDE でプロンプトを実行すると、サンプリング確率、集計アテンション マスクなどの便利な分析が表示されます。

IDE はすべてのプロンプトを自動的に保存し、バージョン管理が組み込まれているため、ユーザーはさまざまなプロンプト手法の出力を比較できます。最後に、ユーザーは CSV ファイルなどの小さなファイルをアップロードし、SDK 内の単一の Python 関数を使用してそれらを読み取ることができます。 SDK の同時実行機能と組み合わせることで、少し大きいファイルでも迅速に処理できます。

以下は IDE の主な機能のデモンストレーションです。

コードエディターとSDK

PromptIDE の中核はコード エディター + Python SDK であり、SDK は複雑なプロンプト技術を実装できる新しいプログラミング パラダイムを提供します。

上の図に示すように、ユーザーは prompt() 関数を使用してコンテキストにトークンを手動で追加したり、sample() 関数を使用してコンテキストに基づいてトークンを生成したりできます。

さらに、複数の Web ワーカーを同時に実行できるため、ユーザーは複数のプロンプトを並行して実行できます。

ユーザーは、同じプログラム内で複数のコンテキストを使用して、複雑なプロンプト手法を実装することもできます。関数に @prompt_fn デコレータがアノテーションされている場合、その関数は独自の新しいコンテキストで実行され、親コンテキストとは独立していくつかのアクションを実行できます。このプログラミング パラダイムは、任意にネストされたサブコンテキストを持つ再帰的および反復的なプロンプトをサポートします。

同時実行性: SDK は Python コルーチンを使用して、@prompt_fn で注釈が付けられた複数の Python 関数を同時に処理し、特に CSV ファイルを処理するときに処理時間を短縮します。

ユーザー入力: プロンプトは、user_input() 関数を通じて対話型にすることができます。 user_input() 関数は、ユーザーが入力した文字列を返します。この文字列は、prompt() 関数を介してコンテキストに追加できます。これらの API を使用すると、わずか 4 行のコードでチャットボットを実装できます。

ファイル: 開発者は、小さなファイル (ファイルあたり最大 5 MiB、合計最大 50 MiB) を PromptIDE にアップロードし、アップロードしたファイルをプロンプトで使用できます。 read_file() 関数は、アップロードされたファイルをバイト配列として返します。これらを上記の同時実行機能と組み合わせることで、プロンプトのバッチ処理を実現できます。

分析: プロンプトを実行すると、モデルの出力をよりよく理解できるように、詳細なトークン分析がユーザーに表示されます。

ユーザーが user_input() 関数を使用すると、ユーザーが応答を入力できるテキスト ボックスがウィンドウに表示されます。次のスクリーンショットは、上記のチャットボット コード スニペットを実行した結果を示しています。

最後に、トークンの視覚化が不要な場合は、読みやすさを向上させるためにコンテキストをマークダウンで提示することもできます。

<<:  NetEase はデータ指標の異常をどのように検出し、診断するのでしょうか?

>>:  マスク氏の最新チップ:脳とコンピューターの相互作用に特化し、視覚障害者が「見る」ことを可能にする

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

NLPは単語を分割せずに実行できます。ハルビン工科大学の最新モデルは、複数のタスクでBERTに勝ちました

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

保険会社、パンデミックによりAI自動化を導入

Star Health と ICICI Lombard は、医療保険契約者に対する請求の事前承認プロ...

すべてのトップオブジェクト検出アルゴリズムを統合: FAIRオープンソースDetectron

昨日、Facebook AI Research (FAIR) は、業界で最も先進的な物体検出プラット...

自動運転データの閉鎖とエンジニアリングの詳細な分析

1 クローズドループコンセプトとR&Dクローズドループ私たちは毎日、クローズドループを扱って...

MIT は、思考を通じて機械にタスクを実行させるブラックテクノロジーを開発

MITのコンピュータサイエンスおよび人工知能研究所(CSAIL)の研究者らは、人間の操作者の脳波を読...

人工知能を学ぶには、このコア技術を知っておく必要があります!

自然言語処理 (NLP) は、コンピューター サイエンスと人工知能の分野における重要な方向性です。自...

人工知能が誤って解釈する画像とはどのようなものでしょうか?

ウィリアム・ギブソンの2010年の小説『ゼロ・ヒストリー』では、ある登場人物が「これまでで最も醜いT...

...

...

強化学習は AGI を実現するのに十分でしょうか?サットン:報酬メカニズムはさまざまな目標を達成するのに十分です

[[405185]]人工知能の分野では、何十年もの間、コンピューター科学者が視覚、言語、推論、運動能...

...

...

時空間予測に適した時系列表現学習法

最近、香港科技大学、上海AIラボなどの組織が共同で時系列の教師なし事前トレーニングに関する論文を発表...

コーチや監督者になる...人間と機械のコラボレーションにより、AIはあなたをよりよく理解します

一見退屈で冷淡なアルゴリズムは、継続的な反復とアップグレードを経て、外界を認識でき、人間の意思決定を...