視覚的なプロンプトを使用してください。シュム氏は、トレーニングや微調整なしですぐに使用できるIDEAリサーチインスティテュートの新しいモデルを実演します。

視覚的なプロンプトを使用してください。シュム氏は、トレーニングや微調整なしですぐに使用できるIDEAリサーチインスティテュートの新しいモデルを実演します。

視覚的なプロンプトを使用するとどのような感じでしょうか?

写真をランダムにフレームに入れるだけで、同じカテゴリが数秒で丸で囲まれます。

GPT-4Vでも米粒を数えるのは困難です。フレームを手動で引っ張るだけで、すべての米粒を見つけることができます。

物体検出の新しいパラダイムがここにあります!

先日終了した IDEA 年次会議において、IDEA 研究所の創設会長であり、米国工学アカデミーの外国人会員でもあるハリー・シャム氏が、最新の研究成果を発表しました。

Visual Prompt に基づいて T-Rex をモデル化します。

プロセス全体はインタラクティブですぐに使用でき、わずか数ステップで完了できます。

これまで、Meta のオープンソース SAM セグメンテーション モデルは、CV 分野における GPT-3 の瞬間を直接的に導きましたが、依然としてテキスト プロンプト パラダイムに基づいていたため、複雑でまれなシナリオに対処することが困難でした。

現在、この問題は画像を交換することで簡単に解決できます。

さらに、カンファレンス全体は、Think-on-Graph知識駆動型ビッグモデル、開発者プラットフォームMoonBit、AI科学研究成果物ReadPaperアップデート2.0、SPU機密コンピューティングコプロセッサ、制御可能なポートレートビデオ生成プラットフォームHiveNetなど、実用的な情報でいっぱいでした。

最後に、沈向陽氏は、過去数年間で最も多くの時間を費やしたプロジェクトである低高度経済についても話した。

低空経済が比較的成熟した状態に発展すると、同じ時点で、深センの空には毎日10万機のドローンが飛び、毎日100万機のドローンが飛ぶようになると私は信じています。

視覚的なプロンプトを使用する

基本的なシングルラウンドプロンプト機能に加えて、T-Rex は 3 つの高度なモードもサポートしています。

  • 複数ラウンドの正例モード

これは、より正確な結果を得て、検出漏れを回避するために、複数回の会話を繰り返すようなものです。

  • ポジティブ + ネガティブ モード

視覚的な手がかりが曖昧で誤検出を引き起こすシナリオに適用できます。

* クロスグラフモード。

単一の参照画像をヒントとして使用して、他の画像をテストします。

T-Rexは、事前に定義されたカテゴリに制限されず、視覚的な例を使用して検出対象を指定できると報告されています。これにより、一部のオブジェクトを言葉で完全に表現することが難しいという問題を克服し、プロンプトの効率が向上します。一部の産業シナリオでは特に複雑なコンポーネントです。

さらに、ユーザーとの対話を通じて、いつでもテスト結果を迅速に評価し、エラー修正を行うことができます。

T-Rex は主に、イメージ エンコーダー、ヒント エンコーダー、ボックス デコーダーの 3 つのコンポーネントで構成されています。

この研究は、IDEA 研究所のコンピューター ビジョンおよびロボティクス研究センターによるものです。

チームが以前にオープンソース化した物体検出モデル DINO は、COCO 物体検出リストで 1 位にランクされた最初の DETR モデルです。ゼロショット検出器 Grounding DINO はGithub で非常に人気があり (現在までに 11,000 個のスターを獲得) 、Grounded SAM はすべてを検出してセグメント化できます。より技術的な詳細については、記事の最後にあるリンクをクリックしてください。

会議全体が実用的な情報でいっぱいです

さらに、IDEAカンファレンスではいくつかの研究成果も共有されました。

たとえば、 Think-on-Graph 知識駆動型ビッグモデルは、簡単に言えば、ビッグモデルとナレッジグラフを組み合わせたものです。

大規模モデルは意図の理解と自律学習に優れていますが、ナレッジグラフは構造化された知識保存方法により論理チェーン推論に優れています。

Think-on-Graph は、大規模なモデル エージェントをナレッジ グラフ上で「考える」ように促し、徐々に最適な答えを検索して推論します (ナレッジ グラフの関連エンティティを段階的に検索して推論します)。推論のあらゆるステップにおいて、ビッグモデルが個人的に関与し、知識グラフを補完します。

MoonBitは、Wasm を基盤とし、クラウド コンピューティングとエッジ コンピューティング向けに設計された開発者プラットフォームです。

一般的なプログラミング言語設計を提供するだけでなく、コンパイラ、ビルド システム、統合開発環境 (IDE)、デプロイメント ツール、その他のモジュールを統合して、開発エクスペリエンスと効率を向上させます。

以前リリースされた科学研究ツール「ReadPaper」も2.0にアップデート。記者会見では、リーディング・コパイロットやポリッシング・コパイロットなどの新機能が披露された。

記者会見の最後に、沈向陽は「低高度経済発展白書(2.0)-完全デジタルソリューション」を発表し、スマート統合低空域システム(SILAS)における時空間プロセスの新しい概念を提案した。

T-Rex リンク:
https://trex-counting.github.io/

<<: 

>>:  OpenAI の謎の Q* は人類を滅ぼすのか?人気の「Q*仮説」は実際には世界モデルにつながり、インターネット上のAI専門家は長い記事で熱く議論してきました。

ブログ    

推薦する

模型の列車の速度を上げるコツは何でしょうか?まず、この問題の第一原理を理解しましょう。

誰もがモデルをより速くトレーニングしたいと考えていますが、本当に適切なアプローチを探していますか?コ...

スマートな薬箱が登場したが、その背後にあるAIの能力を過小評価してはならない

薬を買うとき、自動販売機のように、セルフサービス機で直接注文して、必要なときにすぐに受け取ることはで...

2027年のAIはどのようになっているでしょうか?ヒントは、あなたの脳の中にあります。

やっていることをやめて、窓の外の鳥やリス、昆虫などを眺めてみましょう。これらの生物は、食物を見つけた...

AppleはApp Storeのアプリランキングアルゴリズムを変更する可能性がある

北京時間4月19日朝のニュースで、モバイル広告ネットワーク関係者は、AppleがApp Storeの...

ChatGPTの医療版ライブレビュー!治療計画は実際の医師のものと96%一致しています

同国初の大規模医療モデルはすでに患者を「診察」している。最近、病院内の AI 医師の実際の監視データ...

第14次5カ年計画期間中、我が国のドローン産業の発展はますます明確になりました

[[421133]]ドローン産業の発展レベルは、国の軍事力、科学技術革新、製造レベルを測る重要な指標...

...

オックスフォード大学とケンブリッジ大学は「顔面を叩き」、ChatGPTの使用を許可し、段階的にチュートリアルも教えた。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

IEEE: 新興人工知能サイバーセキュリティの課題と解決策

合成現実(1)課題人工知能は、人々がこれまでしたことのない、または言ったことのないことをしたり、した...

教科書では学べない機械学習に関する12の「民間伝承」

[[264978]]ビッグデータダイジェスト制作出典: towardml編纂者:劉嘉偉、王元元、ウ...

...

HipHop アルゴリズム: マイクロブログの相互作用関係を使用してソーシャル サークルをマイニングする

[[120924]] Weibo 環境において、Weibo ユーザーのソーシャル サークルや興味サー...

InnoDB ストレージ エンジンの 3 つの行ロック アルゴリズムの図解と例の分析

[[415025]]この記事はWeChatの公開アカウント「Flying Veal」から転載したもの...

2019年にAI分野で何が起こったのでしょうか?

2019年は確かに忙しい年でした。人工知能に関する進歩やニュースが頻繁に報道されるにつれ、私たちの...