教師なし学習問題のための一般的なメタアルゴリズムベースのフレームワーク

教師なし学習問題のための一般的なメタアルゴリズムベースのフレームワーク

11月13日、マイクロソフトリサーチとプリンストン大学の研究者らは、ガウス分布とサブスペースクラスタリングの混合など、教師なし学習の問題に対する効率的なアルゴリズムを設計するための一般的なフレームワークを提案した。

研究者らが提案したフレームワークは、下限学習計算式のメタアルゴリズムを使用してノイズ問題を解決します。これは、ノイズのない状態で算術式を学習するためのフレームワークを設計した Garg、Kayal、Saha (FOCS '20) による最近の研究に基づいています。メタアルゴリズムの重要な要素は、「ロバストなベクトル空間分解」と呼ばれる新しい問題に対する効率的なアルゴリズムです。

特定の行列が十分に大きい最小の非ゼロ特異値を持つ場合、メタアルゴリズムがうまく機能することが示されています。 「この条件は問題の滑らかなインスタンスに当てはまると推測しており、したがって、私たちのフレームワークは滑らかな設定でこれらの問題に対する効率的なアルゴリズムを生み出すでしょう。」

この研究は、11月13日に「ノイズが存在する状況での算術式の学習:一般的な枠組みと教師なし学習への応用」というタイトルでarXivプレプリントプラットフォームで公開されました。

教師なし学習では、ラベルや直接の人間による監督を使用せずに、データ内の隠れたパターンと構造を発見します。

ここで研究者は、優れた数学的構造を持つデータ、または数学的に明確に定義された分布から生成されたデータを考慮します。前者の例としては、データ ポイントを特定の類似性パターンに基づいて意味のあるクラスターにグループ化でき、その基礎となるクラスターを見つけることが目標である場合が挙げられます。後者の例としては混合モデリングが挙げられます。これは、データが簡潔に記述された確率分布(ガウス分布など)の混合によって生成されると想定し、サンプルからこれらの分布のパラメータを学習することを目標としています。

多くの教師なし学習問題を解決するための一般的なフレームワークはモーメント法であり、データの統計モーメントを使用してモデルの基礎となる構造またはパラメータを推測します。多くの教師なし学習の問題シナリオでは、基礎となるデータが何らかの優れた数学的構造を持っているため、データのモーメントはパラメーターの明確に定義された関数です。ヒューリスティックな議論では、一般的にはその逆が当てはまる、つまり、構造/分布のパラメータは、データのいくつかの低次のモーメントによって一意に決定されることが多いことが示唆されています。この一般的な方向性において、主な課題は、(経験的)モーメントから潜在パラメータを(近似的に)回復するアルゴリズムを設計することです。

また、アルゴリズムは効率的で、ノイズ耐性(つまり、モーメントが正確ではなくおおよそしかわかっていない場合でもうまく機能する)、さらには外れ値耐性(つまり、いくつかのデータ ポイントが基礎となる構造/分布に準拠していない場合でもうまく機能する)であることが必要です。しかし、この分野では最も単純な問題でさえ NP 困難になる傾向があり、これはノイズや外れ値がない場合でも当てはまります。

したがって、最悪のケースが保証されることが証明できるアルゴリズムを実際に当てにすることはできません。しかし、このアルゴリズムが一般的に、つまりランダムな問題インスタンスに対して、あるいはより理想的には、スムーズに選択されたインスタンスに対して、うまく機能することが保証されることを期待できます。その結果、教師なし学習におけるこれらの各問題に対して、効率性、ノイズ許容度、外れ値許容度、証明可能な保証のレベルが異なる、さまざまなアルゴリズムが設計されてきました。

この研究では、研究者らは、このような多くの教師なし学習問題に適用可能なメタアルゴリズムを提示しています。この研究の出発点は、これらの問題の多くは、算術式の適切なサブクラスを学習するというタスクに帰着するという観察です。

<<: 

>>: 

ブログ    
ブログ    

推薦する

「世界AI人材追跡調査」:米国の上級AI研究者の29%は中国出身。人材を追放することは自らの道を断つことに等しい

中国は世界最大の人工知能研究者の供給国となった。米国の人工知能分野のトップ研究者のほぼ3分の1は中国...

複数人の3D姿勢を正確かつ効率的に推定、Meitu Beihang分散知覚シングルステージモデルがCVPRに採用

最近、トップコンピュータビジョンカンファレンスCVPR 2022がカンファレンスの参加結果を発表し、...

科学者:大規模なAIモデルは小さなAIツールを自動的に生成できる

12月18日、Businessinsiderによると、大規模なAIモデルは現在、人間の介入なしに完全...

MSNを覚えていますか?マイクロソフトはAIを使って人間を排除している

海外メディアの報道によると、マイクロソフトは、自動化や人工知能によるコンテンツ決定に向けた同社の取り...

AIエンタープライズアプリケーションは成熟しつつある

デロイトは最新の「企業における AI の現状」レポートで、AI 実践の成功を特徴付ける共通点と、達成...

生成AIを使用して学生のイノベーションを促進する

今年も新学期がやってきましたが、教育者は AI テクノロジーの爆発的な進歩によって大きな倫理的プレッ...

顔認証の時代が本当に到来しました。あなたも参加してみませんか?

データによると、顔認識市場の規模は今後数年間、年間約20%の高い成長率を維持すると予想されています。...

蹴り倒せない!家庭用ヒューマノイドロボットが誕生、価格は9万ドル未満

最近、障害を乗り越えるヒューマノイドロボットのビデオが話題になった。ビデオでは、ヒューマノイドロボッ...

...

73歳のヒントン氏は、次世代のニューラルネットワーク「教師なし対照学習」を考案した。

最近開催された第43回国際情報検索会議(ACM SIGIR2020)で、Geoffrey Hinto...

宇宙インテリジェンスは産業変革に新たな推進力をもたらす。ファーウェイは能力とパートナーを開放し、ウィンウィンの時代を実現する

8月5日、ファーウェイ開発者会議2023(HDC 2023)全社スマートテクノロジーフォーラムが深セ...

...

端から端まで道を切り開きます! OccWorld: 自動運転の未来に向けた 3D 占有世界モデルへの新しいアプローチ

序文と個人的な理解とても良い作品を見つけたので、皆さんと共有したいと思います!占有+世界モデルに関し...

ディープラーニングを使用してビデオから車両速度を推定する

私が解決したい問題は、車にカメラが付いていて、車がどれくらいの速さで走っているのかを知りたいというこ...

4つのレベルから見た人工知能の経済分析

[51CTO.com クイック翻訳] 人工知能 (AI) システムは経済を変え、大量の失業と巨大な独...