AIがサイバーセキュリティに与える影響は拡大

AIがサイバーセキュリティに与える影響は拡大

IT 業界で今最もホットな話題は何かと尋ねられたら、人工知能 (AI) 以外の答えを言う人はほとんどいないでしょう。

わずか 12 か月で、人工知能は IT 専門家だけが理解できる技術から、小学生から作家、プログラマー、アーティストまで誰もが使用するツールへと進化しました。

人工知能の発展はネットワークセキュリティにも大きな影響を与えます。 AI 対応ツールは、セキュリティ チームがゼロデイ マルウェア、APT、マルウェアフリー攻撃、ハッカー攻撃などの脅威を迅速に特定するのに役立ちます。

さらに、最近のコンピューティング能力とクラウドベースの処理の進歩により、AI 駆動型セキュリティ ツールがより利用しやすくなっています。 数年前のように、大量のハイエンド サーバーを実行する必要はなくなりました。

AI統合の強化

ますます多くの組織が、ウイルス対策保護、データ損失防止、不正検出、ID およびアクセス管理、侵入検知などの既存のセキュリティ対策と AI ツールを統合しています。

AI は、これらのツールが生成する膨大な量のデータを、人間のチームよりも速く分析できます。 これは、AI が次のようなタスクの実行に優れているためです。

検出: AI ツールは人間よりも迅速かつ正確に攻撃を検出できます。 これらのツールは、誤検知が少なくなり、人間の介入を必要とせずに、現実世界のリスクに基づいて対応の優先順位を付けることができます。

分析: これらのツールは、大量のデータを検索し、追加の注意が必要なイベントをセキュリティ チームに警告できます。 つまり、チームは攻撃に迅速に対応し、その影響を最小限に抑えることができるようになります。

検出: AI ツールは、重要な資産を保護するセキュリティ防御を継続的に調査し、ハッカーが悪用する前に弱点を特定するためにも使用できます。

このインテリジェンス機能があれば、セキュリティ チームは将来の攻撃を防ぎ、攻撃が発生したときに迅速に対応できるという大きな利点を得ることができます。

AIがサイバー攻撃のコストに与える影響

興味深いことに、2023 年の IBM データ侵害コストレポートによると、AI と自動化は、セキュリティチームが侵害を特定して封じ込める速度に最も大きな影響を与えることになります。 報告書によると、AIと自動化を広範に活用した組織では、そうでない組織よりもデータ侵害のライフサイクルが108日短かったという。

同レポートによると、セキュリティ AI と自動化ツールを広範に活用した組織は、データ侵害の平均コストが 360 万ドルで、相対的に最も高いコスト削減を示しました。 これは、そのようなツールを使用しない人よりも176万ドル少なく、39.3%の差があります。

時間と賃金を節約

ただし、サイバーセキュリティ インシデントの経済的影響は、インシデントのコストだけで終わるわけではないことを覚えておく必要があります。 Morgan Stanley Research の最近の調査によると、セキュリティアナリストは平均して時間の 20% ~ 40% を自動化タスクに費やしています。 これには、レポート、アラートの概要、パッチ管理、ログの監視と分析が含まれます。

同社は、現在、世界のサイバー労働力はおよそ 470 万人で、世界平均給与は 8 万ドルであると推定しており、世界のサイバー労働力支出の中央値はおよそ 3,740 億ドルに上るとしています。 このワークフローの 30% を自動化できると仮定すると、年間約 1,120 億ドルのコスト削減につながります。

マネージドサービスの役割

AI 対応ツールは組織とそのセキュリティ チームに大きなメリットをもたらしますが、ツールを導入して管理するには依然として人間の専門家が必要です。 多くの場合、IT 業界では依然として資格と経験のある候補者が深刻に不足しているため、これは困難です。

この課題は、自動化と AI を活用して効果的なサイバーセキュリティ サービスを提供できるマネージド サービス プロバイダー (MSP) にとって、大きな成長の機会となります。

サイバーセキュリティは依然として複雑で、常に変化する分野です。 したがって、組織にとって、最も効果的な保護を提供するために人工知能と自動化を活用する適切な MSP にサイバーセキュリティのニーズをアウトソーシングすることはビジネス上理にかなっています。

AI は進化を続け、新しい方法でセキュリティ チームをサポートしていきます。 これらを社内で活用したり、認定された MSP が提供するサービスを利用したりすることで、組織は可能な限り最高の保護を確保できます。

<<: 

>>:  MetaのAIディレクターは、AIスーパーインテリジェンスがすぐに実現するとは考えておらず、量子コンピューティングにも懐疑的だ。

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

2019年にロボット競争は減速するでしょうか?

[[253005]] 「中国製造2025」の実施に伴い、ロボット産業は社会への参入を加速し始めてい...

予測分析: 組織内の時間とデータの再考

[[278064]]時系列は標準的な分析手法ですが、より高度な機械学習ツールでは、より正確な予測モデ...

Googleの視覚言語モデルPaLI-3がリリースされました。パラメータはわずか50億で、より小さく、より高速で、より強力です。

大規模モデルの時代では、視覚言語モデル (VLM) のパラメータは数百億、さらには数千億にまで拡大し...

...

メタ啓示: AIはメタバースの重要な変数である

最近、メタバースに新たな水が流れ込んできました。 Metaが開催した研究室でのディスカッションにおい...

大規模な商用利用が間近に迫り、自動運転には明るい未来がある

自動運転は現在、自動車産業の主要な発展方向の一つとなり、社会全体が注目する技術テーマとなっています。...

汎用人工知能までどれくらい遠いのでしょうか?

汎用人工知能はどのくらい遠いのでしょうか? どのくらいの速さで進歩しているのでしょうか? 現在、人間...

なぜディープラーニングは非パラメトリックなのでしょうか?

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

AWS 上でディープラーニングホストを構築する (Windows 版)

この記事では、Amazon EC2 P2 インスタンスをレンタルして使用する方法について簡単に説明し...

従来のセキュリティ手法を覆し、AIがWebセキュリティを再定義

Amazonが2006年にEC2サービスをリリースしてから11年が経ちました。この 11 年間で、A...

精度が極めて低いです! OpenAIがAI検出器を削除、ICMLの傑出した論文が非難される

OpenAI は、わずか半年しかオンラインではなかった独自のテキスト検出器 Classifier を...

人工知能が普及しつつある今、将来はロボットの時代になるのでしょうか?

今は特に人工知能が普及していますが、将来はロボットの時代になることは絶対にありません。なぜなら、機械...

モデルは、人々の言葉をいくつか聞くことで、よりよく学習できるでしょうか?スタンフォード大学は学習を支援するために言語説明を使うことを提案している

言語は人々の間で最も自然なコミュニケーションの方法であり、多くの重要な情報を伝達するのに役立ちます。...

AIが高度な数学の核心を突破、微分方程式と不定積分を1秒以内に解き、その性能はMatlabをはるかに上回る

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

Adobeが次世代Photoshop機械学習機能を発表、ワンクリックで画像を切り抜くことが可能に

Adobeは月曜日、ビデオを通じて次世代Photoshop CCのいくつかの新機能を発表した。ビデオ...