Google DeepMindは12月15日、「FunSearch」と呼ばれるモデルトレーニング方法を発表し、「上級レベルの問題」や「パッキング問題」を含む一連の「数学とコンピュータサイエンスを含む複雑な問題」を計算できると主張した。 ▲画像出典:Google DeepMind(以下同) FunSearchモデルのトレーニング方法は、主にAIモデルに「評価者」システムを導入していると報告されています。AIモデルは一連の「創造的な問題解決方法」を出力し、「評価者」はモデルが出力した問題解決方法を判断する役割を担います。反復を繰り返すことで、より強力な数学的能力を持つAIモデルをトレーニングできます。 Google DeepMind はテストに PaLM 2 モデルを使用しました。研究者は専用の「コード プール」を作成し、一連の質問をコードの形でモデルに入力し、評価者プロセスをセットアップしました。その後、モデルは各反復でコード プールから質問を自動的に選択し、「創造的な新しいソリューション」を生成し、評価のために評価者に提出します。「最良のソリューション」はコード プールに戻され、別の反復が再び開始されます。 IT Homeは、FunSearchのトレーニング方法が特に「離散数学(組み合わせ論)」に優れていることに注目しました。このトレーニング方法でトレーニングされたモデルは、極端な組み合わせ数学の問題を簡単に解くことができます。研究者はプレスリリースで、モデルが「上位レベルの問題(数え上げや配置を含む数学の中心的問題)」を計算するプロセス方法を紹介しました。 さらに、研究者らは FunSearch トレーニング方法を使用して、「異なるサイズのアイテムを最小数のコンテナに入れる」問題である「ビンパッキング問題」を解決することにも成功しました。FunSearch は、「ビンパッキング問題」に対する「即時」ソリューションを提供し、「アイテムの既存のボリュームに応じて自動的に調整する」プログラムを生成します。 研究者らは、学習にニューラルネットワークを使用する他のAIトレーニング方法と比較して、FunSearchトレーニング方法でトレーニングされたモデルの出力コードは確認と展開が容易であり、実際の産業環境に統合しやすいと述べています。 |
<<: 速報です! OpenAIがByteDanceアカウントを禁止!コンテンツ生成のための GPT の不正使用に関する内部告発
>>: 必要なのはソースコードだけです! 7Bコードの小型モデルは同サイズでは無敵で、その性能はChatGPTやGoogle Geminiに匹敵する
少し前に、「テイラー・スウィフトが中国語を披露」する動画がさまざまなソーシャルメディアプラットフォー...
この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...
[[206222]] 【TechWebレポート】10月13日、Appleの携帯電話はバッテリー膨張...
今日のデジタル時代では、広大なインターネット上での絶え間ない情報交換により、前例のないサイバーセキュ...
ちょうど本日、上海人工知能研究所とSenseTimeは、香港中文大学および復旦大学と共同で、次世代大...
人類は初めて、水深1万メートルでのソフトロボットの深海制御と深海自律遊泳実験を達成し、ロボット工学分...
すごいですね!数語を入力するだけで、美しく高品質な 3D モデルを作成できるようになりました。ちょう...
6月14日、OpenAIは生成型人工知能の分野での競争上の優位性を維持するため、テキスト生成モデルを...
「唯一の真の発見の旅は、未知の土地を訪れることではなく、他人の目を通して宇宙を見ることだ。」 - マ...
プロンプトに応じてテキスト、画像、その他のコンテンツを生成できる生成型人工知能 (AI) の企業導...
[[219257]]人工知能は本質的には人間のシミュレーションです。人間の思考をシミュレートする方法...
誰もが独自の大規模モデルをアップグレードして反復し続けるにつれて、コンテキスト ウィンドウを処理する...