OCRの終焉? Megvii は、ドキュメントレベルの OCR をサポートし、中国語と英語をサポートし、オープンソース化されたマルチモーダル大規模モデルを提案しています。

OCRの終焉? Megvii は、ドキュメントレベルの OCR をサポートし、中国語と英語をサポートし、オープンソース化されたマルチモーダル大規模モデルを提案しています。

ドキュメント画像を Markdown 形式に変換したいですか?

以前は、このタスクには、テキスト認識、レイアウトの検出と並べ替え、数式表の処理、テキストのクリーンアップなど、複数のステップが必要でした。

今回は、たった 1 つのコマンドで、マルチモーダル大規模モデルVary がエンドツーエンドで結果を直接出力します。

写真

中国語または英語の長い段落の場合:

写真

数式を含む文書の画像を以下に示します。

写真

または、モバイル ページのスクリーンショット:

写真

写真の表をLaTeX形式に変換することもできます。

写真

もちろん、マルチモードの大型モデルとして、一般的な機能も維持する必要があります。

写真

Vary は大きな可能性と非常に高い可能性を示しています。OCR はもはや長いパイプラインを必要とせず、エンドツーエンドで直接出力できます。また、ユーザーのプロンプトに応じて、LaTeX、Word、Markdown などのさまざまな形式で出力することもできます。

このアーキテクチャは、大規模モデルの極めて強力な言語事前確率を通じて、「杠」や「杜杠」など、OCR で簡単にスペルミスされる文字を回避することもできます。曖昧な文書の場合、言語事前確率の助けを借りて、より強力な OCR 効果を達成することも期待されます。

このプロジェクトは公開されるとすぐに多くのネットユーザーの注目を集め、一部のネットユーザーはそれを見た後に「ゲームを殺せ!」と叫んだ。

写真

では、この効果はどのようにして達成されるのでしょうか?

大きなモデルにインスピレーションを受けて

現在の大規模なマルチモーダル モデルのほとんどは、ビジョン エンコーダーまたは視覚語彙として CLIP を使用しています。実際、4 億の画像とテキストのペアでトレーニングされた CLIP は、強力なビジュアルとテキストのアライメント機能を備えており、ほとんどの日常的なタスクの画像エンコーディングをカバーできます。

しかし、ドキュメントレベルの OCR やチャート理解などの高密度で細粒度の認識タスクの場合、特に英語以外のシナリオでは、CLIP は明らかなエンコードの非効率性と語彙外の問題を示します。

大規模な純粋な NLP モデル (LLaMA など) が英語から中国語 (大規模なモデルにとっては「外国語」) に移行する場合、元の語彙は中国語のエンコードに非効率的であるため、より良い結果を得るにはテキスト語彙を拡張する必要があります。

研究チームにインスピレーションを与えたのは、この機能でした。

現在、CLIP ビジュアル語彙に基づくマルチモーダル大規模モデルは同じ問題に直面しています。つまり、論文内の密集したテキストのページなどの「外国語画像」に遭遇すると、画像を効率的にトークン化することが困難です。

Vary はこの問題の解決策です。元の語彙を再構築することなく、視覚的な語彙を効率的に拡張できます。

写真

既成の CLIP 語彙を直接使用する既存の方法とは異なり、Vary は次の 2 つの段階に分かれています。

最初の段階では、非常に小さなデコーダーのみのネットワークを使用して、自己回帰方式で強力な新しい視覚語彙を生成します。

次に、第 2 段階では、新しい語彙と CLIP 語彙が融合され、新しい機能を使用して LVLM を効率的にトレーニングします。

Vary のトレーニング方法とモデル構造は次のとおりです。

写真

公開データセットとレンダリングされたドキュメント チャートでトレーニングすることにより、Vary はきめ細かい視覚認識機能を大幅に強化します。

バニラのマルチモーダル機能を維持しながら、エンドツーエンドの中国語と英語の画像、数式のスクリーンショット、チャートの理解機能を刺激します。

さらに、研究チームは、本来は数千のトークンを必要とするページコンテンツが、ドキュメント画像入力を通じて Vary によって 256 個の画像トークンに圧縮され、これにより、さらにページ分析や要約を行うための想像の余地が広がることにも気付きました。

現在、Vary のコードとモデルはオープンソース化されており、誰でも試すことができる Web デモが提供されています。

興味のある友達は行ってみてください〜

<<:  マッキンゼー:2024年にGenAIが人工知能のビジネス界を支配する

>>:  Meta CTO との独占インタビュー: AI はすでに XR のキラー アプリケーションであり、LLM オープンソース コミュニティの競争には敗者なし

ブログ    
ブログ    
ブログ    

推薦する

機械学習プロジェクトにおけるデータの前処理とデータ ラングリング

要点一般的な機械学習/ディープラーニング プロジェクトでは、データ準備が分析パイプライン全体の 60...

Nvidia の新 GPU: 800 億個のトランジスタを搭載した 4nm プロセス、新しい Hopper アーキテクチャは驚異的

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ReLU がビジュアル Transformer のソフトマックスに取って代わり、DeepMind の新しい手法でコストが急速に削減される

Transformer アーキテクチャは、現代の機械学習で広く使用されています。 Attention...

...

脳コンピューターインターフェースの新発見!眠りに落ちた後、脳は起きている時の経験を再生する

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

...

ラマ2 ビッグバン!バークレーは実機テストで8位、iPhoneでローカル実行可能、多数のアプリが無料でプレイ可能、ルカンも夢中

昨日、Meta は Llama 2 の無料商用バージョンをリリースし、再びオープンソース コミュニテ...

AIシミュレーターが物理シミュレーションで新たなSOTAを達成!

機械学習により、コンピュータグラフィックス(CG)シミュレーションがよりリアルになります。この方法は...

...

マイクロソフト、AIの高得点宿題を配布、オンラインでコピーを求める

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

あなたのデータ戦略は GenAI に対応していますか?

AI、特に GenAI の急速な発展により、分析および IT リーダーには、データ戦略とデータ管理...

ドローンは農業にも活用されており、植物保護ドローンは侵入の防止と制御に非常に効果的です。

今日のドローンは、ビデオ録画だけでなく、害虫や病気の問題を防ぐための農業での使用など、幅広い用途に使...

彼の人工知能ツールは生きた細胞の内部を覗くことができる

[[272732]] ▲ 図:アレン細胞科学研究所のコンピュータービジョン研究者、グレッグ・ジョンソ...

...