生成型 AI が人間と機械のコミュニケーション方法を変えるため、今年は人工知能にとって極めて重要な年となります。この記事では、2024 年に注目すべき主要な人工知能のトレンドを紹介します。 1. 包括的なデータがイノベーションを推進する合成データはすでに多くのイノベーションを推進しており、これは生成 AI の分野自体からも生まれており、OpenAI の GPT などの最先端モデルに驚くほど機能的に近い小規模モデルが数多く存在します。これは、大規模なモデルによって生成された合成データでトレーニングされているためです。 ヘルスケアでは、合成データを使用して患者コホートを生成するというアイデアがあり、実際の患者データに基づいて患者集団に関する合成データを生成している組織もいくつかあります。これはプライバシーに関する懸念に対処するのに役立ち、特定の臨床試験に使用できます。医療画像処理の分野では、合成データ生成の興味深い使用例もいくつかあります。 2. 企業におけるAIモデルのトレーニングと開発の増加同社は今年、人工知能のトレーニング機能を確立した。インフラが整備されたので、モデルのトレーニングと開発がさらに進むことが期待されます。一方、AI モデルをトレーニングする唯一の目的は、そのモデルに対して推論を実行することであるため、これが永遠に続くことは明らかにできません。 2025 年には推論がさらに重要になることがわかります。 人々はより大きなモデルを推論していますが、開発の最前線は OpenAI や DeepMind のような大規模な研究室からオープンソース プロジェクトへと移っています。これにより、微調整や部分的なトレーニング手法に関する膨大な作業を伴う、刺激的で小規模な、多くの場合ドメイン固有のプロジェクトが急増しました。 QLoRA は、2023 年、そしておそらくそれ以降も最も重要な AI 論文となるでしょう。その結果、開発の民主化がさらに進むことになります。 今年の最後の数か月間、大規模な最先端モデルに投資してきた Microsoft などの企業が、推論に必要なメモリ フットプリントが非常に小さい Phi などの小規模モデルを構築するなど、手元のタスクに合わせてモデルを適正サイズにすることに重点が置かれてきました。 また、IBM などのハードウェア企業が、通常であれば多くの時間とメモリを必要とする、より小規模で解像度の低いトランザクションを処理するためのスケーリング モデルに重点を置いたデータ センターやチップのアーキテクチャを構築し始めています。 3. 「グラフデータベースの年」LLM とすべてのエンタープライズ分析作業を次のレベルに引き上げるのは、グラフ機能とベクトル検索機能およびベクトル化を組み合わせることです。すでにこれが表面化し始めていることがわかります。 Microsoft Ignite では、大規模な言語モデルをサポートする上での Microsoft Graph の価値について多くのことが語られ、誰もが独自の CoPilot を構築できるようにしたいと考えています。これが可能だと考えられる理由は、特定の企業内の特定の日における特定のユーザーの特定のワークフローのナレッジ グラフと、RAG などのユース ケースを組み合わせて、モデルが特定のクエリのコンテキストを理解できるようにするためです。 4. PCに搭載されるAIチップの増加AIチップを内蔵したパソコンがますます増えていくでしょう。基本的に、Intel と Apple が他のすべての企業に代わってこれを決定しました。今、AMD には選択肢があり、Intel にも選択肢があり、Qualcomm はそれを大々的に宣伝しています。ローカル AI 側で実行するための興味深いものを構築する人が大勢いるでしょう。特に Mac エコシステムがあるため、これは開始する市場になると思います。これがアクセラレータにどのような影響を与えるかを見るのは興味深いでしょう。 AI 開発者向けワークステーション PC のクラスの出現、または既存のワークステーション カテゴリの加速が予想されます。 5. GPU不足の問題が緩和される再びチップ不足が起こることはないだろう。もし起こったとしても、リスクは反対側にある。今年は、さまざまなものの二次ソースを見つけるために多くの作業が行われました。 GPU を入手する上で最大の障害となっているのは、Cocos と呼ばれる TSMC のオンチップ基板パッケージング プロセスです。さらに先を見据えると、TSMC は生産能力を拡大するとともに、組み立てとテスト作業の一部をアウトソーシングしています。たとえば、TSMCとNvidiaは台湾のUMCと中間体の製造契約を結んでいる。サムスンはまた、来年3Dパッケージングプロセスを公開する予定だ。 |
<<: モデル量子化とエッジAIがインタラクションを定義する方法
「ブロックチェーンが停滞期に入ることは必ずしも悪いことではありません。この期間中、私たちはゆっくりと...
著名なテクノロジー記者マーク・ガーマン氏によると、Appleはバグ修正に集中するため、iOS 18の...
機械学習を始める最も簡単な方法は何ですか?今年ハーバード大学で統計学の学位を取得したばかりのダニー・...
1. DNNの一般化能力に関する問題この論文では主に、過剰パラメータ化されたニューラル ネットワー...
[51CTO.com からのオリジナル記事] ロボット製造は現在、知能ロボットの時代である 2.0 ...
この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...
中国インターネット情報センター(CNNIC)が発表した第41回中国インターネット発展統計報告によると...
熱帯雨林の杖が、ダンブルドアのようなあらゆる時代の並外れた魔法使いの伝説を生み出したのと同じように、...
[[439902]]この記事では、次の検索アルゴリズムについて説明します。線形探索バイナリ検索補間検...
過去2年間、人々の注目は5Gにますます集まっているものの、人工知能の発展と人気は少しも衰えていません...
論文リンク: https://arxiv.org/pdf/2309.08504.pdfコードリンク:...
人工知能は成長して以来、絶え間ない混乱に悩まされてきましたが、特に近年は人工知能が発展の黄金期に入り...