今日は、pytorch についてお話します。今日は、9 つの最も重要な pytorch 操作をまとめました。これにより、全体的な概念が確実に理解できるようになります。 テンソルの作成と基本操作PyTorch テンソルは NumPy 配列に似ていますが、GPU アクセラレーションと自動微分化を提供します。テンソルは、torch.tensor を通じて、または torch.zeros や torch.ones などの関数を使用して作成できます。 オートグラッドtorch.autograd モジュールは自動微分化のメカニズムを提供し、操作を記録し、勾配を計算できるようにします。 ニューラルネットワーク層 (nn.Module)torch.nn.Module は、ニューラル ネットワークを構築するための基本コンポーネントです。線形層 (nn.Linear)、畳み込み層 (nn.Conv2d) など、さまざまな層を含めることができます。 オプティマイザオプティマイザーは、損失関数を最小化するためにモデル パラメータを調整するために使用されます。以下は、確率的勾配降下法 (SGD) オプティマイザーを使用した例です。 損失関数損失関数は、モデル出力とターゲット間のギャップを測定するために使用されます。たとえば、クロスエントロピー損失は分類問題に適しています。 データの読み込みと前処理PyTorch の torch.utils.data モジュールは、データの読み込みと前処理のための Dataset クラスと DataLoader クラスを提供します。データセット クラスは、さまざまなデータ形式やタスクに合わせてカスタマイズできます。 モデルの保存と読み込みtorch.save を使用してモデルの状態辞書を保存し、torch.load を使用してモデルを読み込むことができます。 学習率調整torch.optim.lr_scheduler モジュールは、学習率のスケジューリングのためのツールを提供します。たとえば、StepLR を使用して、各エポックの後に学習率を下げることができます。 モデル評価モデルのトレーニングが完了したら、モデルのパフォーマンスを評価する必要があります。評価するときは、モデルを評価モード (model.eval()) に切り替え、torch.no_grad() コンテキスト マネージャーを使用して勾配計算を回避する必要があります。 |
>>: GitHub の年末特典: プログラミング チャットボットがすべてのユーザーに公開され、ネットユーザーはこれをゲームチェンジャーと呼ぶ
[[339978]]米国のTikTok狩りは続く。 8月27日、ByteDanceがTikTokの北...
この論文で紹介されている特徴伝播は、グラフ機械学習アプリケーションで欠落している特徴を処理するた...
フィンテックの人工知能と機械学習技術は、大規模なデータセットをリアルタイムで分析し、改善を図るのに役...
3月16日、KuaishouとTestin Cloud Testingが共同で主催するApache ...
[[248236]]皆さんは、イ・セドルと柯潔を破った Google の「Alpha Go」をまだ覚...
機械学習と人工知能に関しては、スキャンダルが後を絶ちません。過去数ヶ月、マイクロソフトのジャーナリス...
近年、AI テクノロジーに投資している企業の大多数は、一般的に、AI アプリケーションを業務改善やコ...
マーフィー著昨年のAlphaGo、今年のLibratusと、さまざまな業界で「人工知能」のトレンドが...
高い信号対雑音比を備えた蛍光イメージングは、生物学的現象の正確な可視化と分析の基礎となっています...
[[386531]]誰もそこに頭を突っ込みたくないよ!ザッカーバーグ氏は脳コンピューターインターフェ...
私が初めて機械学習に興味を持ったとき、論文を読んだり、それを実装したりすることに多くの時間を費やしま...
ドローンは最近ますます人気が高まっています。高解像度カメラ付きの機械を数百ドルで購入することもできま...