今日は、pytorch についてお話します。今日は、9 つの最も重要な pytorch 操作をまとめました。これにより、全体的な概念が確実に理解できるようになります。 テンソルの作成と基本操作PyTorch テンソルは NumPy 配列に似ていますが、GPU アクセラレーションと自動微分化を提供します。テンソルは、torch.tensor を通じて、または torch.zeros や torch.ones などの関数を使用して作成できます。 オートグラッドtorch.autograd モジュールは自動微分化のメカニズムを提供し、操作を記録し、勾配を計算できるようにします。 ニューラルネットワーク層 (nn.Module)torch.nn.Module は、ニューラル ネットワークを構築するための基本コンポーネントです。線形層 (nn.Linear)、畳み込み層 (nn.Conv2d) など、さまざまな層を含めることができます。 オプティマイザオプティマイザーは、損失関数を最小化するためにモデル パラメータを調整するために使用されます。以下は、確率的勾配降下法 (SGD) オプティマイザーを使用した例です。 損失関数損失関数は、モデル出力とターゲット間のギャップを測定するために使用されます。たとえば、クロスエントロピー損失は分類問題に適しています。 データの読み込みと前処理PyTorch の torch.utils.data モジュールは、データの読み込みと前処理のための Dataset クラスと DataLoader クラスを提供します。データセット クラスは、さまざまなデータ形式やタスクに合わせてカスタマイズできます。 モデルの保存と読み込みtorch.save を使用してモデルの状態辞書を保存し、torch.load を使用してモデルを読み込むことができます。 学習率調整torch.optim.lr_scheduler モジュールは、学習率のスケジューリングのためのツールを提供します。たとえば、StepLR を使用して、各エポックの後に学習率を下げることができます。 モデル評価モデルのトレーニングが完了したら、モデルのパフォーマンスを評価する必要があります。評価するときは、モデルを評価モード (model.eval()) に切り替え、torch.no_grad() コンテキスト マネージャーを使用して勾配計算を回避する必要があります。 |
>>: GitHub の年末特典: プログラミング チャットボットがすべてのユーザーに公開され、ネットユーザーはこれをゲームチェンジャーと呼ぶ
イノベーションとテクノロジーの時代において、贅沢な暮らしはスマートホームによって変化しています。これ...
AI画像検出器が再び攻撃を受けました!最近、中東紛争の写真が大量にインターネット上に公開され、極限状...
AI はこれらの分野で大きな進歩を遂げており、世界がネットゼロの未来を目指す中でのエネルギー効率と持...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
人工知能 (AI) システムは人間に似た方法でやり取りするため、一部の人は不安に思うかもしれませんが...
フロー制御は、複雑なシステムでは必ず考慮しなければならない問題です。この記事では、さまざまなフロー制...
動的プログラミング基本的に、それは次のことを意味します。女の子を追いかけるときは、彼女の親しい友達全...
1. よく使われるソートアルゴリズムの簡単な説明以下では、主にソートアルゴリズムの基本的な概念と原則...
[51CTO.com からのオリジナル記事] 11月16日、51CTO (http://x..com...
翻訳者 | 劉涛レビュー | Chonglou AIがなぜ機能するのか誰も知らないですよね?はい、そ...