パフォーマンスが最大480倍向上:Armが2つの新しいAIエッジコンピューティングチップ設計を発表

パフォーマンスが最大480倍向上:Armが2つの新しいAIエッジコンピューティングチップ設計を発表

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

Armは、AI機能を備えた2つのNPU(ニューラル・プロセッシング・ユニット)、 Arm Cortex-M55Ethos-U55を発売しました。

この新しいチップは、クラウド接続を必要としない IoT 端末デバイス向けに設計されており、低電力組み込みデバイスの機械学習および推論機能を向上させることを目的としています。

Armは、特定の音声および視覚シナリオにおいて機械学習のパフォーマンスを最大480倍向上できると主張している。

どちらのチップも2021年初頭に発売される予定です。

Cortex-M55: ヘリウムテクノロジー + カスタム命令機能

Cortex-M55 は、コスト効率とエネルギー効率に優れた Arm の Cortex-M 製品シリーズに属します。

これは、Arm Helium テクノロジーをベースにした初のシステムオンチップです。いわゆる Helium テクノロジーは、実際には Arm Cortex-M シリーズ プロセッサ用の M-Profile Vector Extension (MVE) テクノロジーであり、最小の組み込みデバイス向けに強化された機械学習と信号処理を提供するように設計されています。

最大 480 倍の改善: Arm が 2 つの新しい AI エッジ コンピューティング チップ設計を発表">

これは、低電力チップ向けに最適化され、150 を超える新しいスカラーおよびベクター命令を追加した Armv8.1-M アーキテクチャの拡張です。 8 ビット、16 ビット、32 ビットの固定小数点データを効率的に計算できます。

8 ビット固定小数点形式の場合、単精度浮動小数点数 (32 ビット) や倍精度浮動小数点数 (16 ビット) などの浮動小数点データ型が追加されます。

Armによると、Heliumテクノロジーを搭載したCortex-M55は、前世代製品と比べてデジタル信号処理性能が5倍、機械学習性能が15倍向上しているという。

さらに、高度なメモリ インターフェイスにより機械学習データへの高速アクセスが可能になり、Arm TrustZone システムに組み込まれています。

Ethos-U55: Arm初のマイクロNPU

Ethos-U55 は、Cortex-M プロセッサをサポートする NPU アクセラレータ アーキテクチャに属し、バッテリー寿命とコストに敏感な複雑な AI コンピューティング問題の解決に特化しています。Cortex-M55、Cortex-M33、Cortex-M7、Cortex-M4 などの製品と組み合わせて使用​​する必要があります。

Ethos-U55 は、メモリフットプリントが小さく、面積と電力効率を考慮して非常にコンパクトになるように設計されています。

つまり、これは、最小の電子機器でも動作できるほど小型で電力効率に優れた特殊なニューラル ネットワーク チップです。

32〜256 個の構成可能なコンピューティング ユニットが含まれており、ベースの Cortex-M55 と比較して最大32 倍高速な機械学習パフォーマンスを実現します。

つまり、以前の世代の Cortex-M チップと比較して、Ethos-U55 + Cortex-M55 の組み合わせでは、機械学習タスクを最大 480 倍高速に実行できます。

最大 480 倍の改善: Arm が 2 つの新しい AI エッジ コンピューティング チップ設計を発表">

Armは、Cortex-M7と比較して、Cortex-M55とEthos-U55の組み合わせでは推論速度が50倍高速化し、音声アクティビティ検出やノイズキャンセルなどのタスクではエネルギー効率が最大25倍向上できると述べた。

最大 480 倍の改善: Arm が 2 つの新しい AI エッジ コンピューティング チップ設計を発表">

ソフトウェア面では、Cortex-M55 と Ethos-U55 はどちらも、一般的な機械学習フレームワーク (TensorFlow と PyTorch) や Arm 独自のソリューションとうまく連携します。

応用分野

機械学習は現在、さまざまな業界のさまざまなシステムに導入されています。

AIエッジチップは、メーカー同士が競い合う新たな「戦場」になりつつある。

たとえば、Intel の Myriad、Google の Edge TPU、Nvidia の Jetson Nano などです。

Armは、端末AI市場が今後数年間で爆発的な成長を遂げる分野になると考えています。

新しい IP バージョンはこの領域をカバーするように設計されています。

たとえば、新しいチップは農業分野に AI アプリケーションをもたらすことができるようになります。

機械学習を搭載した数百または数千の低コストのセンサーにより、各植物に必要な水、肥料、農薬の量を慎重に調整できるようになります。

たとえば、自動運転車やスマート医療機器の実装には、AI エッジ チップのサポートが必要です。

Armは、Cortex M55 + Ethos U-55の組み合わせにより、ジェスチャー検出、指紋、顔、音声認識など、より高度な機械学習タスクを実行できると述べた。

Armの自動車およびIoT事業の副社長兼ゼネラルマネージャーであるディプティ・ヴァチャニ氏は次のように付け加えた。

クラウドベースのデータセンターと通信するのではなく、比較的低電力のデバイスで AI を実行することは、データのセキュリティとプライバシーにとって重要です。

しかし、Arm の新しいチップ設計はすべて推論チップであり、物体分類やリアルタイムの顔認識などの計算集約型のタスクには適していません。

<<:  微分可能アーキテクチャ検索DARTSより10倍高速な、Fourth Paradigmが最適化されたNASアルゴリズムを提案

>>:  ボストン・ダイナミクスの大きな黄色い犬が石油会社に加わる! 「決して疲れない」と主張する

ブログ    
ブログ    
ブログ    

推薦する

スタンフォード大学の教授が、専門家以外の人向けにAIの核となる概念を1ページで定義

スタンフォード大学のクリストファー・マニング教授は、AI 分野の中核となる概念を 1 ページを使って...

経験からの教訓: 機械学習の問題に適したアルゴリズムを選択するにはどうすればよいでしょうか?

機械学習がますます普及するにつれて、タスクを適切に処理できるアルゴリズムがますます多く登場しています...

PyTorch を使用した Mixture of Experts (MoE) モデルの実装

Mixtral 8x7B の発売は、オープン AI の分野、特に Mixture-of-Expert...

ベイジアンディープラーニングと大規模ベースモデルの融合: 効率的で説明可能な AI のための戦略

人工知能 (AI) には、コンピューターサイエンス、数学、統計、心理学、生物学など、複数の学問分野が...

LSTMとトランスフォーマーの利点を組み合わせることで、DeepMindの強化学習エージェントはデータ効率を向上させます

[[423163]]近年、マルチエージェント強化学習は飛躍的な進歩を遂げています。例えば、Deep...

人工知能は人間の生活水準をどのように向上させることができるのでしょうか?

米国を例にとると、10年後には、成人一人当たり人工知能ビジネスから年間13,500ドルの利益を得るこ...

...

知識をグラフに変換するには、いくつのステップが必要ですか?インターネット上で最も包括的な清華ナレッジグラフレポートの89ページ

ナレッジグラフは、人工知能の重要な分野技術です。2012年にGoogleによって提案され、大規模な知...

AIが安全な生産のインテリジェントな監視を実現する方法

生産における安全は社会発展の永遠のテーマであり、すべての仕事の本質です。工業製造企業の場合、事業継続...

分類アルゴリズムの概要

[[151327]]決定木分類アルゴリズム決定木誘導は古典的な分類アルゴリズムです。これは、トップダ...

このレポートを読めば、人工知能に関するあなたの常識は基本的に正しいものとなるでしょう。

[[266878]]中国における人工知能に関する議論の多くは体系化されておらず、断片的であり、人工...

人工知能、VR、音声検索、従来のマーケティングモデルを変える「三銃士」

人工知能と関連技術はマーケティングの未来を変えつつあり、仮想現実 (VR)、音声検索、人工知能はマー...

AGVロボットマルチエージェント経路探索の4つの主要な研究方向

マルチエージェント経路探索 (MAPF) は、人工知能、ロボット工学、理論計算機科学、実践的オペレー...

...

今後 30 年間、人工知能の時代において、どの職業が消滅し、あるいは存続するのでしょうか?

最近の教育プロセスの中で、何人かの子供たちが私に大学で何を専攻すればいいかと尋ねました。将来的に発展...