AIが人間の職業を「置き換える」ためのロードマップ

AIが人間の職業を「置き換える」ためのロードマップ

昨日、私はこのような図を見ました。AI がどのように人間に取って代わるかを示すレベル図です。

写真

写真によると、E1からE8+までの6つのレベルがあります。

図から、AIが人間に取って代わる道筋は、AIの応用分野によって決まることがわかります。 AI応用分野のパスはフォールトトレランス率によって決まります。

簡単に言えば、ここでのフォールト トレランス率とは、試行錯誤にかかるコストのことです。

一言でまとめると、AI はエラー許容度の高い業界から低い業界まで、人間の職業を「置き換え」始めるでしょう。

これまで、創造的な仕事には人間の思考が必要であり、簡単に代替できるものではないと考えられてきましたが、AIの応用開発はそうではないようです。

クリエイティブな仕事には標準的な答えがないことが多く、標準的な答えがない仕事は AI に置き換えられる可能性が高くなります。

なぜこのようなことが起こるのでしょうか?これには許容度の問題が関係している可能性があります。多くの場合、仕事に対する標準的な回答が少ないほど、クライアントはその仕事に対してあまりこだわりがない可能性があります。クライアントがそれほどこだわりがなければ、コストは比較的低くなります。

逆に、基準が明確で厳格な仕事は、基準が統一されており、顧客も​​よく知っているため、AIに簡単に置き換えられません。仕事がうまく行われているかどうかを知っているので、非常にうるさくなり、コストと価格が非常に高くなるため、簡単にAIに仕事を任せることはできません。

自動運転についても同様です。自動運転技術には厳しい基準があります。公道で走行させるにはどのような条件や基準を満たさなければなりませんか。そうでないと、事故が起きたときに人命に関わることになります。責任はどのように分担すべきでしょうか。これも明確ではないかもしれません。

自動運転がまだ遠い理由は、エラー率が期待に応えられていない(人間と同じレベルにとどまっている)からです。責任の問題は非常に深刻な問題であるため、全自動 L4 は、高額な補償に対処できるほどエラー率が低くなければなりません。

同じ原則が会計にも当てはまります。GPT の結果がどれだけ適切に記述されていても、会計士は署名して責任を負う必要があります。 AIエラー率が1%レベルであれば、やはり人間による検査と検証が必要になります。実際、現在の会計ツールと比べて大きな改善はなく、むしろ既存ツールよりも精度が低い可能性もあります(既存ツールもファイルの自動インポートや、さまざまな角度からの検査機能など多数あります)。

そして、エラー率の高いものから低いものまでを見ると、AI が職業を「置き換える」タイムラインが簡単にわかります。

以前、私は家を改築していました。レンガ職人は30代の比較的若い親方で、月に2つの仕事をすれば基本的に1万元以上稼げるし、生活もかなり快適だと言っていました。

当時、私はこの件についてレンガ職人と雑談をしていました。あなたの仕事はかなり良くて、たくさんのお金を稼いでいて、AIに取って代わられるのは容易ではないと私は言いました。

結局のところ、タイル張りは非常に厳しい基準がある仕事ですが、AIで定量化するのは難しいです。最近の仕事を見てみると、最も置き換えられる可能性が高いのはオフィスで働く人々です。

レンガ職人はこう言いました。「今では、一部の老練な職人を除いて、レンガ積みの仕事をする人はほとんどいません。若い人たちは、それをやる気さえありません。」

私は言いました。「物は希少であるがゆえに価値があるのだから、あなたの価値は将来ますます高まるかもしれない。」さらに、AIがあなたの仕事を置き換えることは困難です。

レンガ職人と雑談しているうちに、実はAIで代替できない仕事もあるが、代替にかかるコストを考慮しなければならないとも言いました。

したがって、フォールトトレランス率に加えて、交換コストも考慮する必要があります。

AI 作業のコストが人間の労働コストよりも高くなったとしても、AI がそのような作業を置き換えることはありません。

なぜこのアイデアを思いついたのでしょうか?タイル職人と雑談していたところ、タイルを敷くときはタイルが比較的平らであることを確認する必要があると伝えました。AIが平らさを維持することは不可能ではないかもしれませんが、コストが比較的高くなる可能性があります。たとえば、家の大きさはそれぞれ異なり、所有者はタイルの敷設に対してさまざまな要件を持っています。現時点では、機械があったとしても、設計者は大量の測定データを考え出して機械に入力する必要があり、コストがかなり高くなる可能性があります。

実際、タイル張りには多くの細かい作業が関わってきます。すべての詳細を抽出して機械に割り当てると、コストが非常に高くなります。

そのため、仕事の内容が非常に複雑で、それぞれの内容に厳しい基準がある場合、このタイプの仕事は AI に置き換えることが難しくなります。フォールトトレランス率が低いだけでなく、AI 作業のコストが人件費よりも高くなる可能性が高くなります。

これについてどう思いますか?

<<:  爆発的なパフォーマンス!最新の MapEX: 既存のすべての SOTA を大幅に上回り、マップレスの認識が到来するか? ? ?

>>:  マイクロソフトとOpenAIが訴えられた後、アップルはニュース出版社とAIモデルのトレーニング費用の支払いについて交渉している

ブログ    
ブログ    

推薦する

コンピューターにビデオの字幕を認識させる

馬文華氏は、中国科学院自動化研究所でパターン認識と人工知能の博士号を取得しました。主に画像認識、ター...

「人間の顔」から「犬の顔」まで、AIはペット経済にも参入するのでしょうか?

[[334871]]原題:「人間の顔認識」から「犬の顔認識」まで、人工知能はペット経済にも参入する...

...

...

口の中に124個のセンサーを埋め込み、Google Glassの創設者の新プロジェクト:舌でメッセージを送信

不運なGoogle Glassはスマートデバイスの波の中で大きなインパクトを与えることはできなかった...

DeepFMアルゴリズムを使用して推奨システムを設計する方法

[[239303]] [51CTO.com クイック翻訳] 10年以上の開発を経て、推奨システムはイ...

変数からカプセル化まで: この記事は機械学習のための強固なPythonの基礎を築くのに役立ちます

[[206375]]まず、Python とは何でしょうか? Python の作成者である Guido...

Google の自動運転車の秘密の世界を解明: 初めて公開された強力なツールの数々

[[201428]]アトランティック誌は今週、アルファベット傘下の自動運転企業ウェイモの謎を解明す...

物流業界における人工知能の応用と発展の動向の概要

北京科技大学機械工学部物流工学科羅磊、趙寧人工知能(AI)は、人間の知能をシミュレート、拡張、拡大す...

AIチップの過去と未来、この記事を読んでください

[[248236]]皆さんは、イ・セドルと柯潔を破った Google の「Alpha Go」をまだ覚...

RVフュージョン!自動運転におけるミリ波レーダーとビジョンフュージョンに基づく3D検出のレビュー

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

EUのAI法案は企業に厳しい規則と巨額の罰金をもたらす

EUが長らく議論されてきたEU AI法案を前進させ、AIの使用に関するガードレールを導入しようと最近...

日本は変形可能なロボットボールを月に送り込む予定。ボール全体の重さは250グラム

海外メディアの報道によると、日本は5月31日に、特殊な外観の球形ロボットを月に送る予定だ。この球体ロ...

「顔をスキャン」すると、実はリスクが伴う。顔認識、個人情報保護の観点から

[[417904]]例:2020年6月、杭州市阜陽区人民法院は、郭兵と杭州野生動物公園との間のサービ...

大規模モデルを路上に展開するための重要なステップ: 世界初の言語 + 自動運転オープンソースデータセットが登場

DriveLM は、データセットとモデルで構成される言語ベースのドライブ プロジェクトです。 Dri...