医療画像データと他の日常的な画像との最大の違いの 1 つは、DICOM シリーズ データを扱う場合、特にそれらの多くが 3D であることです。 DICOM 画像は、スキャンまたは体の特定の部分を構成する多数の 2D スライスで構成されています。 では、このタイプのデータ用のディープラーニング ソリューションをどのように構築すればよいのでしょうか? この記事では、3D 医療データでディープラーニング モデルをトレーニングするために使用できる 6 つのニューラル ネットワーク アーキテクチャを紹介します。 3D UネットU-Net アーキテクチャは、医療画像のセグメンテーションのための強力なモデルです。 3D U-Net は、従来の U-Net モデルを 3D セグメンテーションに拡張します。エンコード(ダウンサンプリング)パスとデコード(アップサンプリング)パスで構成されます。 エンコード パスは入力画像のコンテキストをキャプチャし、デコード パスは正確なローカリゼーションを可能にします。 3D U-Net は、ボリューム画像の 3D 特性の処理に非常に効果的です。 VネットV-Net アーキテクチャは、ボリューム画像セグメンテーション用の別の 3D 畳み込みニューラル ネットワークです。 U-Net と同様に、V-Net にはエンコーダー/デコーダー アーキテクチャがありますが、フル解像度の 3D 畳み込みを使用するため、U-Net よりも計算コストが高くなります。 ハイレゾネット残差接続を持つ一連の 3D 畳み込み層を使用します。モデルはエンドツーエンドでトレーニングされており、3D 画像全体を一度に処理できます。 エフィシェントネット3Dこれは、EfficientNet アーキテクチャの 3D 改良版です。U-Net や V-Net ほど 3D セグメンテーションによく使用されるわけではありませんが、計算コストとパフォーマンスのトレードオフが優れているため、計算リソースが限られている場合に検討できます。 U-Netへの注目これは、ネットワークが現在のタスクに関連性の高い画像の特定の部分に集中できるようにする注意メカニズムを組み込んだ U-Net のバリエーションです。 ディープメディックこれは、通常の解像度用とダウンサンプリングされた入力用の 2 つのパスを使用する 3D CNN であり、ローカル情報とより大きなコンテキスト情報の両方を組み込むことができます。 要約するこの記事では、医療画像業界で 3D MRI および CT スキャンを処理するために使用されているいくつかのディープラーニング モデルを紹介しました。これらのニューラル ネットワークは、3D データを入力として受け取り、DICOM シリーズの特定の体の部分の複雑さを学習するように設計されています。 |
>>: LK-99「早納品、遅案内」?インドの科学者は、新しいメロンを生産するために原作者から指導を受ける:新しいサンプルは量子ロックと良好な伝導性を示す
みなさんこんにちは。私はDiaobaiです。最近、対照学習が流行っているので、ICLR2020では、...
みなさんこんにちは、私はZhibinです〜今日は、GridSearch グリッド検索と K 分割相互...
宝の地図を持って砂漠に埋もれた金や宝石を探すというのは、おとぎ話によく登場する筋書きです。今では、携...
人工知能技術は今、世界を変えつつあります。多くの業界はすでに、ビジネス プロセスを改善するために A...
ビッグデータダイジェスト制作ディープラーニングの三大巨頭の一人として知られるヤン・ルカン氏は、常に楽...
6月17日、世界最大のコンピュータービジョンカンファレンスであるCVPRの自動運転セミナーにおいて、...
AI の健全性と進歩に関する最近の調査、研究、予測、その他の定量的評価では、労働力の再訓練の必要性、...
バックエンド開発者にとっては、無限レベルの分類に強い印象を受けたのではないでしょうか。最初はかなり時...
これはパス ベクトル ルーティング プロトコルであり、インターネット上のどこかにあるデータにアクセス...
ビッグデータダイジェスト制作出典: piprogramming編纂者:清寧人工知能は私たちの生活の一...
スマート オフィスの概念は新しいものではありませんが、企業のオーナーや管理者が自動化の生産性の価値を...
世界的な技術競争において、人工知能は他の追随を許さない世界的な技術革新の新たな局面において、人工知能...
この小さなロボットはエネルギーに溢れています。体は昆虫ほどの大きさですが、自分の体重の22倍の重さの...