パスワードバスター:機械学習

パスワードバスター:機械学習

コンピュータの誕生以来、ユーザー名とパスワードは最も基本的なアクセス制御および ID 認証の方法でした。しかし、データ侵害の事後検証により、盗まれた認証情報が今日のハッカーにとって主要な攻撃ポイントであることが判明しました。実際、ハッキング関連の事件の 81% は、盗まれたパスワード、デフォルトのパスワード、または弱いパスワードを利用していました。この悲劇の原因の 1 つは、ユーザーが複数のアカウントやアプリケーションで同じパスワードを再利用していることです。たとえば、TeleSign のレポートによると、ユーザーの 73% が複数のオンライン アカウントに同じパスワードを使用しています。

[[228287]]

パスワードの再利用の問題は、企業環境でも存在します。同時に、盗まれたアカウントは攻撃者にとって、正当なユーザーであるかのように見せかける優れた隠れ蓑にもなります。正当な資格情報が使用されている限り、セキュリティアナリストはそれが通常のユーザーによる操作であると考えるため、ドミノ効果が引き起こされ、攻撃者が企業ネットワーク内で横方向に移動するリスクが高まります。

多要素認証が救世主となるのか?

セキュリティ意識の高い企業は、サイバー攻撃者に対するさらなる障壁を作るために、パスワードに二要素認証または多要素認証 (MFA) を追加しています。つまり、ユーザーがアプリ、端末、またはネットワーク インフラストラクチャにログインする場合、パスワード以外の情報や要素を提供する必要があります。 MFA では、次の要素の組み合わせが使用されます。

  • ユーザー名、パスワード、PIN、セキュリティの質問など、あなたが知っている情報。
  • さまざまな形式のソフト/ハード トークン、スマート カードなど、所有するもの。
  • あなた自身の指紋、声紋、顔、その他の生体認証特徴など。

MFA は複数の方法を使用して ID を認証するため、権限のないユーザーによる機密データへのアクセスを防ぎ、ネットワーク内での移動を制限するための最適な方法の 1 つとなります。企業は、MFA の使用をアプリのアクセスとエンドユーザーに限定するという間違いを犯しがちです。ただし、特定のアプリ、ユーザー、またはリソースにのみ MFA を適用すると、企業は依然としてハッカー攻撃のリスクにさらされます。攻撃チェーンの脆弱性を最小限に抑え、盗まれた資格情報から会社を保護するには、すべてのユーザー (エンドユーザー、特権ユーザー、請負業者、パートナー) とすべての IT リソース (クラウド アプリケーション、オンプレミス アプリケーション、VPN、エンドポイント、サーバー) に MFA を適用する必要があります。

しかし、MFA の利点にもかかわらず、その採用率は 100% に達していません。最大の障害は、生産性とエンドユーザーエクスペリエンスへの影響です。たとえば、ユーザー名とパスワードを入力した後、テキストメッセージで受信した確認コードを手動で入力するのは非常に面倒だと感じる人が多いです。しかし、技術の発展により、MFA 導入に対する抵抗はいくらか解消されつつあります。スマートフォンをワンクリックするだけで、ユーザーが端末にワンタイム認証コードを手動で入力する必要がなくなるのは大きな改善となるでしょう。それにもかかわらず、比較的簡素化され便利になったにもかかわらず、この追加手順が煩わしいと不満を言うユーザーもいます。

目に見えないアクセス制御: リスクベースの認証

結局のところ、最高のセキュリティとは透明性があり、手間がかからないものです。ここで、リスクベースの認証と機械学習技術が役立ちます。

リスクベースの認証では、機械学習を使用して、ユーザーの行動に基づいてアクセス ポリシーを定義および適用します。分析、機械学習、ユーザー プロファイル、ポリシー適用を組み合わせることで、リスクの低いアクセスに対して認証を免除するか、リスクが高まったときに認証の強度を高めるか、アクセスを完全に拒否するかについて、リアルタイムのアクセス決定が可能になります。各アクセス要求のリスクを評価するために、機械学習エンジンは、場所、ブラウザの種類、オペレーティングシステム、端末デバイスの状態、ユーザー属性、タイムスタンプ、最近の異常な権限変更、異常な命令実行、異常なリソースアクセス、異常なアカウント使用、異常な権限など、複数の要素を処理する必要があります。

リスクベースの認証がすべてのユーザー (エンドユーザー、特権ユーザー、請負業者、パートナーなど) とすべてのリソース (アプリ、インフラストラクチャなど) に適用されなければ、エンタープライズ セキュリティは意味がありません。成熟した ID およびアクセス戦略の一部としてリスクベースの認証を使用して、クラウドおよびオンプレミスのアプリケーション、デバイス、データ、インフラストラクチャを保護すると、次のような利点が得られます。

  • ユーザーの行動とリスクに基づいて攻撃をリアルタイムでブロック
  • リスクに応じてユーザーに要求される認証レベルを調整する
  • 機械学習によりポリシーの作成と変更作業を最小限に抑え、ITリソースを解放します。
  • 各ユーザーの行動レベルまでのアクセス制御によりセキュリティポリシーを向上

リスクベースの認証は、リアルタイムのセキュリティを提供するだけでなく、リスクの高いイベントにフラグを付けてセキュリティアナリストにプッシュし、さらに調査します。これにより、今日のハイブリッド IT 環境における脅威を特定する作業負荷が大幅に軽減されます。アクセス制御に機械学習を実装すると、組織はパスワードへの依存を減らし、最終的にはパスワードを完全に排除できるようになります。

<<:  実践に最適なオープンソース機械学習プロジェクト 30 件をすぐに集めましょう。

>>:  ロボットも「感情カード」を切るが、人間の本性もアルゴリズムに変えられるのか?

ブログ    
ブログ    
ブログ    

推薦する

2021年、人工知能は再び疫病との戦いで役割を果たすだろう

[[344407]] COVID-19パンデミックが世界を席巻する以前から、人工知能(AI)、特にそ...

AIの海のサイレンソング:テンセントAIラボの大規模モデルの幻覚問題の概要

大規模言語モデルは、多くの下流タスクで驚くべき能力を発揮してきましたが、使用時にはまだいくつかの問題...

データ分析に人工知能を取り入れる方法

生成型 AI の台頭は、インターネットの誕生と同様の影響を及ぼしています。新しいテクノロジーが私たち...

企業に利益をもたらす 5 つの AI トレンド

[[358096]]市場の状況がますます複雑化する今日の不安定なビジネス環境では、組織が分析に基づく...

人工知能、機械学習、ディープラーニングをどのように区別するのでしょうか?

この記事は、LDV Partners のパートナーであるシリコンバレーの投資家レイク・ダイ氏によるも...

「アドビの父」が82歳で逝去!ガレージで始まり、PostScriptを発明し、伝説的な人生で世界を変えた

アドビの共同創業者ジョン・ワーノック氏が19日、82歳で亡くなった。本日、Adobe は公式に発表を...

AI は無限であり、あなたの声によって動かされます。マイクロソフトは慈善団体や業界のパートナーと協力し、テクノロジーで愛を育むお手伝いをします。

12月2日、マイクロソフトと周迅のAI音声紅丹丹慈善プロジェクトの発起人である魯音源文化伝承社は、...

IBM WatsonX: AIを企業の生産性の中核に

「象は踊れるの?」もちろん踊れますよ!かつての人々の考え方では、伝統的な大企業は、組織の肥大化や閉鎖...

あなたの顔データはどこに保存されますか?

AI顔変換ソフト「ZAO」やMegviiのキャンパス顔認識をめぐる論争に続き、17万件の顔データが...

...

...

人工知能の潜在能力を活かすための深層開発

[[244225]]人工知能は現実的な科学技術の力であり、需要、デジタル経済、高品質の開発に焦点を当...

人工知能企業が大規模なデータ漏洩事件に見舞われ、250万人以上のデータが流出

[[258473]]最近、セキュリティ分野に注力する国内の人工知能企業で大規模なデータ漏洩事件が発生...

OpenAIは米国で以前に申請していた「GPT-5」の商標を中国で登録申請した。

8月10日、国家知識産権局商標局の公式サイトによると、OPENAI OPCO, LLCは先月末に2...

ビッグモデルの要約は信頼できるでしょうか? GPT-4を使用すると、人間の筆記よりも滑らかで、幻覚も少なくなります

自然言語生成 (NLG) のタスクとしてのテキスト要約は、主に長いテキストを短い要約に圧縮するために...