グーグルのディープマインドは1月5日、3つの新たな開発を発表した。その1つは、AIロボットが人間に危害を加えないようにするためのトレーニングデータを収集するシステムのための「ロボット憲法」の起草だった。 Google のデータ収集システムである AutoRT は、視覚言語モデル (VLM) と大規模言語モデル (LLM) の両方を活用して、環境を理解し、未知の環境に適応し、適切なタスクを決定します。 今回起草された「ロボット憲法」は、アイザック・アシモフの「ロボット三原則」にヒントを得て、安全性を重視し、LLMに対して、人間、動物、鋭利な物体、さらには電化製品に関わる作業を避けるよう指示している。 ディープマインドは、安全性を高めるために、ロボットの関節は力が一定の閾値を超えると自動的に停止するようにプログラムされていると述べた。また、専用の物理的な緊急停止スイッチも装備されている。 グーグルは、過去7か月間に4つの異なるオフィスビルに53台のAutoRTロボットを配備し、7万7000回以上の試験を実施したと述べた。 一部のロボットは人間のオペレーターによって遠隔操作されますが、他のロボットはスクリプトに従って動作したり、Google の Robot Transformer (RT-2) 人工知能学習モデルを使用して完全に自律的に動作します。 試験で使用されたロボットは、カメラ、ロボットアーム、移動ベースのみを備えており、派手さよりも実用性を重視している。各ロボットについて、システムは VLM を使用してその環境と視野内のオブジェクトを認識します。次に、LLM は、カウンターにスナックを置くなど、ロボットが実行できる創造的なタスクのリストを作成し、ロボットが実行すべき適切なタスクを選択する意思決定者の役割を果たしました。 IT Homeはレポートから、DeepMindのもう一つの新技術は、既存のRobotic Transformer RT-2よりも正確で高速なニューラルネットワークアーキテクチャであるSARA-RTであることを知りました。 Google は、テーブルを拭くなどの特定の物理的タスクをロボットがより適切に実行できるように 2D 輪郭を追加する RT-Trajectory も発表しました。 |
<<: ChatGPT-4、Bard、Claude-2、Copilot空間タスクの正確性の比較
科学技術の急速な発展に伴い、人工知能(AI)はさまざまな分野にますます統合されつつあり、農業分野も例...
キーボードと帽子を組み合わせたらどうなるでしょうか?冗談はさておき、Google 日本支社のエンジニ...
ChatGPT の大規模な停止の後、Altman 氏は本日、開発者会議でのすべての製品アップデートが...
11月15日、WeChat車載バージョンを搭載したGACの第2世代Trumpchi GS4が発売され...
Google といくつかの大学による最近の研究により、大規模なモデルが人間の「心」を持ち始めること...
周知のとおり、大学入試は我が国で最も競争率の高い試験です。世界最先端のロボットを大学入試に送り込んだ...
2023 年の ACM フェローが発表されました。先ほど、米国計算機協会 (ACM) は、2023...
OpenAI が成功に忙しい一方で、シリコンバレーの最大のライバルである Anthropic は、...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
[[411501]]この記事はWeChatの公開アカウント「Xiao Lin Coding」から転...
近年、人工知能技術は急速に発展し、ますます多くの分野でその急速な発展の勢いと大きな可能性を発揮してい...
企業のデジタル変革が深まるにつれ、人工知能技術はますます成熟し、ロボットによる顧客サービスは数千の業...
トランプ大統領は米国の製造業がかつての栄光を取り戻すことを望んでいる。彼はロボットに狙いを定め、米国...