マイクロソフトは言語モデルをより調和のとれたものにするために複数のツールとデータセットをオープンソース化

マイクロソフトは言語モデルをより調和のとれたものにするために複数のツールとデータセットをオープンソース化

Microsoft は最近、AI 駆動型コンテンツ モデレーション システムを監査し、AI モデルの潜在的なエラーを指摘するテストを自動的に作成するように設計されたいくつかのツールとデータセットのオープン ソースを発表しました。 Microsoft によれば、AdaTest および (De)ToxiGen プロジェクトにより、人間レベルの複雑さを持つテキストを分析および生成するための、より信頼性の高い大規模言語モデル (LLM)、または OpenAI の GPT-3 に類似したモデルが作成できる可能性があるという。

現在、LLM には多くのリスクが伴います。これらのモデルはインターネット(ソーシャル メディアを含む)からの大量のデータを使用してトレーニングされるため、トレーニング中に有害なテキストに遭遇する可能性があります。モデルの再トレーニングにかかる​​コストと、存在するエラーの数が多いため、これらのモデルの欠陥を見つけて修正することは依然として困難です。

有害性の問題に対処するため、Microsoft Research チームは、有害な言語にフラグを立てるために使用できるコンテンツ モデレーション ツールをトレーニングするためのデータセットである ToxiGen を開発しました。 Microsoft によれば、ToxiGen には「中立的」および「有害」な発言の例が 274,000 件含まれており、公開されているヘイトスピーチのデータセットとしては最大規模のものの 1 つとなっている。

Ece Kamar ToxiGen、Microsoft Research のパートナー リサーチ エリア マネージャー、AdaTest および (De)ToxiGen のプロジェクト リーダー

いかなるコンテンツ モデレーション システムにも欠陥があり、これらのモデルは継続的に改善する必要があることを私たちは認識しています。 (De)ToxiGen の目標は、AI システムの開発者が既存のコンテンツ モデレーション テクノロジーのリスクや問題をより効果的に特定できるようにすることです。

私たちの実験では、このツールは多くの既存のシステムをテストするために使用できることが示されており、このツールの恩恵を受ける新しい環境についてコミュニティから学ぶことを楽しみにしています。

サンプルを生成するために、Microsoft Research チームは、黒人、身体および認知障害を持つ人々、イスラム教徒、アジア人、ラテン系アメリカ人、LGBTQ+、ネイティブ アメリカンを含む 13 の少数派グループを対象とした「中立的な」発言とヘイトスピーチの LLM サンプルを提供しました。これらの記述は、既存のデータセットのほか、ニュース記事、意見記事、ポッドキャストのトランスクリプト、その他の同様の公開テキスト ソースから抽出されています。

Microsoft チームは、ToxiGen ステートメントを作成するために使用されるプロセスは (De)ToxiGen と呼ばれ、LLM 生成ツールが誤って識別される可能性のあるステートメントを生成するように誘導することで、特定の監査ツールの弱点を明らかにするように設計されていると説明しました。チームは、手動でキュレーションされた 3 つの毒性データセットの研究を通じて、1 つのツールから始めて ToxiGen を使用して微調整すると、ツールのパフォーマンスが「大幅に」向上することを発見しました。

Microsoft チームは、ToxiGen の作成に使用された戦略を他の領域に拡張して、より「微妙な」かつ「豊富な」中立的およびヘイトスピーチの例を作成できると考えています。しかし専門家は、これは万能薬ではないと警告している。

<<:  Natureサブジャーナル:ニューロモルフィックコンピューティングがさらに進歩し、科学者はニューロンとシナプスの人工シミュレーションを実現した

>>:  アート業界におけるメタバースの探究

ブログ    
ブログ    

推薦する

...

自動運転車の未来に関するレポート:乗用車の95%が消滅し、7兆ドルの旅行市場に4つの大きなチャンスがある

[[199334]]自動運転車は20年以内に世界経済を劇的に変え、保険、メディア、セキュリティ、物流...

今後10年間で、人間の仕事の約50%が人工知能に置き換えられるでしょうか?

人工知能と聞いて真っ先に思い浮かぶのは、手を自由にすることですが、絶対的に正しいものはありません。手...

...

人間は形を見るが、AIは質感を見る:コンピュータービジョン分類の失敗についての議論

[[270985]]研究者たちは、ディープラーニングの視覚アルゴリズムが、主に形状ではなくテクスチャ...

ビッグデータと人工知能に関する冷静な考察

ビッグデータと人工知能は今年最もホットな話題であり、特に司法分野ではホットです。ビッグデータ時代の司...

スマートシティの発展: 複数の接続デバイスと人工知能の重要な役割

コネクテッドデバイスの急速な普及により、スマートシティのコンセプトが現実に近づきつつあります。これら...

多くのライターがChatGPTを著作権侵害で非難した。OpenAI: 著作権の範囲を誤解している

8月31日、OpenAIは今週、原告に数人の作家を含むほぼ同一の集団訴訟2件に応じた。彼らは、Cha...

クラウド コンピューティングを超えて考える: インテリジェント エッジはコンピューティングと AI の未来です

インテリジェント エッジは、スマート デバイスとモノのインターネットをデータ収集ポイントから、組織に...

SAP、データスフィアプラットフォームを強化する新たな生成AI機能を発表

SAP は、生成 AI 向けの多数の新機能を発表しており、まもなく SAP Datasphere プ...

新しいAIにより、教師はインテリジェントな個別指導システムを迅速に開発できる

インテリジェントな個別指導システムは、代数や文法などの特定の科目の指導に効果的であることが証明されて...

精度がわずか26%だったため、OpenAIはAIテキスト検出ツールをひっそりと終了した。

OpenAI の関係者は最近プレスリリースを更新し、AI テキスト検出ツールである AI Clas...

ロボットの魚は本物の魚よりも速く泳ぎます!人間の心筋細胞から作られた紙の魚は108日間自律的に泳ぐことができる

米国のハーバード大学とエモリー大学の研究者らが協力し、ヒト幹細胞から抽出した心筋細胞を使った「人工魚...

...

アリババ人工知能ラボ:テクノロジーがあなたの生活をどう変えるかを見てみましょう

[PConline News] ジャカルタアジア競技大会が閉幕し、アジア競技大会は正式に杭州タイムに...